Photon Statistics

Jhih-Sheng Wu

Department of Photonics NYCU

2025

Outline

Photon-Counting Statistics

- Poisson distributions and coherent lights
- Super-Poisson distributions
- Sub-Poisson distributions

Photon Detection

- Theories
- Shot noises
- Observation

Photon-Counting: Detectors

Sensitive light detectors:

- photomultiplier tube (PMT)
- single-photon avalanche diode (SPAD), avalanche photodiode (APD)
- superconducting nanowire single-photon detectors (SNSPDs)

Photon-Counting Statistics

Photon flux $\Phi($ number of photon per unit time)

$$\Phi = \frac{IA}{\hbar\omega} = \frac{P}{\hbar\omega}$$

Quantum Efficiency η (typical \sim 10 %)

$$\eta = \frac{\text{number of counts}}{\text{number of photons}} = \frac{N(T)}{\Phi T}$$

N(T) is the count number for a given duration TCounting rate R (upper limit 10^6 counts/sec, dead time \sim 1 μ s)

$$R = \frac{N}{T} = \eta \Phi = \frac{\eta P}{\hbar \omega}$$

Photon-Counting Statistics

Maximum Power

Let the maximum counting rate $R = 10^6$ count/sec and $\eta = 15\%$. The photon energy $\hbar\omega$ is 2 eV. What is the maximum power that the photodetector can detect?

Photon-Counting Statistics

Maximum Power

Let the maximum counting rate $R = 10^6$ count/sec and $\eta = 15\%$. The photon energy $\hbar\omega$ is 2 eV. What is the maximum power that the photodetector can detect?

Answer

$$R = \frac{\eta P}{\hbar \omega}$$

$$\Rightarrow P = \frac{R\hbar \omega}{\eta} = 2.1 \times 10^{-12} \text{ Watt}$$

Poisson Distribution: Coherent Light

Counting within δt $L = c\delta t$ $\bar{n} = \frac{\Phi L}{c} = \Phi \delta t$

Probability p_n : find n photons in the cube of a length L. If for a random process, the distribution is a Poisson distribution,

$$P(n) = \frac{\bar{n}^n}{n!} \exp^{-\bar{n}}$$

Poisson Distribution

When the occurence of events are independent, the number of the events satisfies a Poisson distribution.

A discrete random varible X with a Poisson Distrution:

$$p(X) = \frac{\lambda^X}{X!} \exp(-\lambda)$$

Average number $\langle X \rangle$ is λ . Variance $\langle X^2 \rangle - \langle X \rangle^2$ is also λ . When λ is large, Poisson distribution is close to a Gaussian distribution.

Events

- Calls per hour at a call center
- Typhoons per year
- Number of laser photons hitting a detector in a particular time interval
- Shot noises

Example

Number of Typhoons

There are 5 typhoons in average coming to Taiwan every years.

- What is the probability of 4 typhoons coming to Taiwan next year?
- What is the probability of less than 2 typhoons coming to Taiwan next year?

Example

Number of Typhoons

There are 5 typhoons in average coming to Taiwan every years.

- What is the probability of 4 typhoons coming to Taiwan next year?
- What is the probability of less than 2 typhoons coming to Taiwan next year?

Answer

$$p(n) = \frac{5^n}{n!} e^{-5}.$$

• $p(4) = \frac{5^4}{4!} e^{-5} = 0.175$
• $p = p(0) + p(1) = \frac{5^0}{0!} e^{-5} + \frac{5^1}{1!} e^{-5} = 0.04$

Classification by Photon Counting

(1) Super-Poissonian $\sigma(n) > \sqrt{\bar{n}}$: thermal, chaotic lights, mixed ensembles, non-classical light (?)

(2) Poissonian Light $\sigma(n) = \sqrt{\bar{n}}$: coherent lights

(3) Sub-Poissonian Light $\sigma(n) < \sqrt{\bar{n}}$: non-classical light

Photon Bunching and Antibunching

Degradation of Photon Statistics

Photon Detection

• Classical theory: treat I(t) as a continuous number

- constant intensity $I(t) = I_0 \Rightarrow$ Poisson distribution $\sigma(n) = \sqrt{\bar{n}}$
- time-dependent $I(t) \Rightarrow$ super-Poisson distribution $\sigma(n) > \sqrt{\bar{n}}$

• Quantum theory

$$\bar{N} = \eta \bar{n}$$

$$\sigma^2(N) = \eta^2 \sigma^2(n) + \eta (1 - \eta) \bar{n}$$

(1) If η = 1, statistics of N is the same as n
(2) If η ≪ 1, σ(N) = √N ⇒ always Poissonian N regardless n.
High quantum efficiency is important for sub-Poissonian photodetection.

Shot Noise

Detection with photodiode (PD): high-intensity light beam hits on PD and generate a current i(t). Let $i(t) = \langle i \rangle + \Delta i(t)$. Because of the particle-like property, the noise $\Delta i(t)$ has a flat spectrum (white noise). If the detector has a band width Δf ,

$$\langle \Delta i^2 \rangle = 2 e \Delta f \langle i \rangle,$$

Noise power is

$$P_{\text{noise}} = R_L \langle \Delta i^2 \rangle = 2 e \Delta f \langle i \rangle,$$

Shot Noise

Classical Noise

- Continuous fluctuation
- noise power spectrum is large at low frequencies
- can be eliminated by beam splitter techniques

Shot Noise

- Due to the discrete nature
- $\Delta i(t)$ is full random
- noise power spectrum is flat
- can not be eliminated

Review of Scientific Instruments 83, 063705 (2012)

Generation of Sub-Poissonian Light

- Sub-Poissonian currents to lights, for examples, PMTs, LEDs of high quantum efficiency η
- Squeezed light by nonlinear optics

F. Wölfl et al., J. Mod. Opt. 45, 1147 (1998).