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Outline

Photon-Counting Statistics
® Poisson distributions and coherent lights
® Super-Poisson distributions
® Sub-Poisson distributions

Photon Detection
® Theories
® Shot noises
® QObservation
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Photon-Counting: Detectors

Sensitive light detectors:
® photomultiplier tube (PMT)
® single-photon avalanche diode
(SPAD), avalanche photodiode
(APD)
® superconducting nanowire
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Photon-Counting
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Photon-Counting Statistics

Photon flux ®(number of photon per unit time)

IA P

@ = — = —
hw  hw
Quantum Efficiency n( typical ~ 10 %)

number of counts  N(T)
number of photons  ®T

N(T) is the count number for a given duration T
Counting rate R (upper limit 10° counts/sec, dead time ~ 1 ys)
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Photon-Counting Statistics

Maximum Power

Let the maximum counting rate R = 105 count/sec and n = 15%. The
photon energy hw is 2 €V. What is the maximum power that the
photodetector can detect?
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Photon-Counting Statistics

Maximum Power

Let the maximum counting rate R = 105 count/sec and n = 15%. The
photon energy hw is 2 €V. What is the maximum power that the
photodetector can detect?

Answer
nP
R=—
hw
hw
=P= RT = 2.1 x 1072 Watt
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Poisson Distribution: Coherent Light

Counting within ¢t Probability p,: find n photons in the
L = cbt cube of a length L. If for a random
n = ‘I)_CL = dit process, the distribution is a Poisson
distribution,
Lo o (= L
7 P(n) = ol exp "
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Poisson Distribution

When the occurence of events are independent, the number of the events
satisfies a Poisson distribution.

A discrete random varible X with a 040 ; ; . .
Poisson Distrution: 035 -

0.30
X ool
p(X) = 5 exp(—) ol
015
Average number (X) is . 010
Variance (X?) — (X)? is also \. 0.05

When A\ is large, Poisson distribution is

close to a Gaussian distribution.

Events
® (Calls per hour at a call center
® Typhoons per year
® Number of laser photons hitting a detector in a particular time interval
® Shot noises
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Example

Number of Typhoons
There are 5 typhoons in average coming to Taiwan every years.
® What is the probability of 4 typhoons coming to Taiwan next year?

® What is the probability of less than 2 typhoons coming to Taiwan
next year?
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Example

Number of Typhoons
There are 5 typhoons in average coming to Taiwan every years.
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Classification by Photon Counting

(1) Super-Poissonian o(n) > v/7: thermal, chaotic lights, mixed
ensembles, non-classical light (7)

(2) Poissonian Light o(n) = \/7i: coherent lights
(3) Sub-Poissonian Light o(n) < \/7i: non-classical light
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Photon Bunching and Antibunching

Photon counting and beyond
Photon counting: information of n
Correlation: statistical relationship between photons. Coherence functions
(correlation function ) g1, g2, ... Antibunching (single photon), Random
(laser), Bunching (thermal)
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Degradation of Photon Statistics
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Photon Detection

¢ Classical theory: treat I(t) as a continuous number

® constant intensity I(t) = Iy = Poisson distribution o(n) = v/n
® time-dependent I(t) = super-Poisson distribution o(n) > v/

® Quantum theory
N= nn

o*(N) = n*c*(n) +n(1 —n)n

(1) If p =1, statistics of N is the same as n
(2) Ifp< 1, o(N) = V'N = always Poissonian N regardless n.

High quantum efficiency is important for sub-Poissonian photodetection.
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Shot Noise

Detection with photodiode (PD): high-intensity light beam hits on PD and
generate a current 4(t). Let i(t) = (4) + Ai(t). Because of the particle-like

property, the noise Ai(t) has a flat spectrum (white noise). If the detector
has a band width Af,

(AP) = 2eAf(i),

Noise power is
Proise = RL<A12> = 26Af<i>7
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Shot Noise
Classical Noise
® Continuous fluctuation
® noise power spectrum is large at low frequencies
® can be eliminated by beam splitter techniques
Shot Noise
® Due to the discrete nature
Ai(t) is full random
noise power spectrum is flat
can not be eliminated
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Review of Scientific Instruments 83, 063705 (2012)
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Generation of Sub-Poissonian Light

® Sub-Poissonian currents to lights, for examples, PMTs, LEDs of high
quantum efficiency n

® Squeezed light by nonlinear optics
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F. Wolfl et al., J. Mod. Opt. 45, 1147 (1998).
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