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Beam splitters are essential optical components that have a profound impact on
both classical and quantum optics by dividing incoming light beams into reflected
and transmitted parts. This note delves into their quantum mechanical behavior,
illustrating how they manipulate light at the photon level. We begin by examining
the classical description, where amplitudes split predictably, and then transition to
quantum descriptions using annihilation operators to uncover uniquely quantum
phenomena.

A key concept explored is the transformation of single-photon states, which leads
to entangled outputs. This is notably demonstrated in the Mach-Zehnder interfer-
ometer, where quantum interference allows for precise measurements such as phase
determination, with implications for quantum computing and sensing. We also in-
vestigate the Hong-Ou-Mandel effect, a striking example of quantum interference
where two photons incident on a symmetric beam splitter exhibit “bunching” rather
than the classically expected distribution. This non-classical result is fundamental
to linear optical quantum computing. Furthermore, the note differentiates the out-
comes for N-photon states, which become entangled after passing through a beam
splitter, from coherent states, which remain unentangled.
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Beam Splitter

• Indistinguishablity of boson

• Gaussian boson sampling

• Here is a link to a YouTube video about quantum optics and Gaussian sam-
pling with a billiard picture: Gaussian wave packet in a quantum ellipse bil-
liard.

https://www.youtube.com/watch?v=1DcvGvkJrZk
https://www.youtube.com/watch?v=1DcvGvkJrZk
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1 Beam Splitters

A beam splitter is an optical component which is partially transparent. An incident
beam on a beam splitter is partially reflected and partially transmitted and thus split
into two beams. Classically, an incident beam with an amplitude A1 is split into a
reflected beam with the amplitude A1 and a transmitted beam with the amplitude
A2. The amplitudes are related by the coefficients of reflection and transmission,

A2 = rA1, (1.1)

A3 = tA1. (1.2)

We can also consider another case where a beam of the amplitude A0 is incident on
the other side of the beam splitter. In this case, the amplitudes are related by

A2 = t′A0, (1.3)

A3 = r ′A0. (1.4)

Figure 1: Beam splitter. Quantum descriptions where the annihilation operators
replace the amplitudes.

The scattering matrix describes a beam splitter(
A2
A3

)
=

(
t′ r
r ′ t

)(
A0
A1

)
≡U

(
A0
A1

)
. (1.5)

Because of energy conservation, the matrix U must be unitary so that

|r |2 + |t|2 = 1 (1.6)

|r ′ |2 + |t′ |2 = 1 (1.7)

tr∗ + t′∗r ′ = 0. (1.8)

In order to satisfy Eq. (1.8), the phase of each beam cannot be arbitrary. Let’s
consider the example of a symmetric beam splitter. Let the phase between r and t
is θ , that is, Arg

[
t
r

]
= θ. A symmetric beam splitter implies Arg

[
t′
r ′

]
= θ. Eq. (1.8)

becomes

|r ||t|
(
eiθ − e−iθ

)
= 0, (1.9)
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which gives θ = ±π2 . A discussion about the phases can be found in the Ref. [1].

The quantum description of a beam splitter is to replace amplitudes with annihila-
tion operators. Let the right-going photons have the annihilation operator a1, and
the bottom-going photons have the annihilation operator a0. The scattering matrix
describes a beam splitter (

a2
a3

)
=

(
t′ r
r ′ t

)(
a0
a1

)
=U

(
a0
a1

)
, (1.10)(

a0
a1

)
=

(
t′∗ r ′

r∗ t∗

)(
a2
a3

)
=U†

(
a2
a3

)
. (1.11)

The incident beams, a0 and a1, are treated as two independent modes with the
commutation relations

[a0, a
†
0] = 1, (1.12)

[a1, a
†
1] = 1, (1.13)

[a0, a
†
1] = 0. (1.14)

From Eqs. (1.12), (1.13), (1.14), and (1.10), one can show that the operators a2 and a3
automatically satisfy

[ai , a
†
j ] = δij . (1.15)

Physically, these relations mean that after a beam splitter, a beam is split into two
independent modes a2 and a3.

Below, we will discuss what happens to a quantum light after passing a beam splitter.
We will consider the cases of a single photon state, N -photon state, and a coherent
state. We will see that the Fock states exhibit quantum natures, where the output
states are entangled, while the output state of a coherent state can be factorized.

1.1 Single Photon

The incident state |0⟩0|1⟩1 can be expressed as

|0⟩0|1⟩1 = a†1|0⟩0|0⟩1. (1.16)

From Eq. (1.11), the creation operators a†0 and a†1 are related to a†2 and a†3 by(
a†0
a†1

)
=UT

(
a†2
a†3

)
. (1.17)

After incidence on the beam splitter, the state becomes

UT a†1|0⟩0|0⟩1 = (ra†2 + ta†3)|0⟩2|0⟩3 (1.18)

= r |1⟩2|0⟩3 + t|0⟩2|1⟩3, (1.19)
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which is an entangled state.

Figure 2: MachZehnder interferometer.

Consider a MachZehnder interferometer with two 50:50 beam splitters of r = i√
2

and t = 1√
2
. Let the initial state be |0⟩0|1⟩1. After the first beam splitter, the state

becomes

i
√
2
|1⟩2|0⟩3 +

1
√
2
|0⟩2|1⟩3. (1.20)

When the state arrives at the second beam splitter, the state becomes

i
√
2
|1⟩2|0⟩3 +

eiθ
√
2
|0⟩2|1⟩3, (1.21)

where θ is a phase shift due to the difference of the two paths.

To deal with the second beam splitter, we first rename the modes. Modes 2 (a2) and
3 (a3) in the Eq. (1.21) become the incident beams to the second beam splitter. We
rename Mode 2 (a2) as the new Mode 1 (ã1) since it is right-going and Mode 3 (a3)
as the new Mode 0 (ã0) since it is bottom-going. For simplicity, we skip the tilde
signs below. Now, we can use the same scattering matrix to find the final state after
the second beam splitter, (

a†2
a†3

)
=

 1√
2

i√
2

i√
2

1√
2


 eiθ√2a†0i√

2
a†1

 (1.22)

=

 (e
iθ−1)
2 a†0

i(eiθ+1)
2 a†1

 (1.23)

The probability at D1 is
∣∣∣∣∣(eiθ−1)2

∣∣∣∣∣2 = sin2 θ
2 . The probability at D2 is

∣∣∣∣∣ i(eiθ+1)2

∣∣∣∣∣2 =

cos2 θ
2 . This is a more rigorous description of single-photon interference.
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1.2 Two-Photon Hong-Ou-Mandel Effect

The Hong-Ou-Mandel effect is a simple but novel phenomenon of quantum optics.
It is an example where quantum interference leads to a non-classical result. Consider
a symmetric beam 50-50 beam splitter. Now, two single-photon states hit the beam
splitter from different sides. As shown in Fig. 3, the initial state is |1⟩0|1⟩1. What
will be the output state? Since the total input photon number is two, the output
state could be |2⟩2|0⟩3, |0⟩2|2⟩3, and |1⟩2|1⟩3. Here, the subscripts of the ket denote
on which side the photon state is, as in Fig. 3. Hence, a general expression for the
output state is the superposition of the above possible states,

|output⟩ = α|2⟩2|0⟩3 + β|0⟩2|2⟩3 +γ |1⟩2|1⟩3. (1.24)

From the classical point of view, the state |1⟩2|1⟩3 seems the most possible state.
However, in 1987, Hong et al. showed that for a symmetric beam splitter, γ = 0,
that is, the probability of the state |1⟩2|1⟩3 is zero.[2] Specifically, the output state is

|output⟩ =UT a†0|0⟩U
T a†1|0⟩ (1.25)

=

 1√
2

i√
2

i√
2

1√
2

(a†00
) 1√

2
i√
2

i√
2

1√
2

( 0a†1
)
|0⟩ (1.26)

=
1
2

(
a†2 + ia†3

)(
ia†2 + a†3

)
|0⟩ (1.27)

=
i
2

[(
a†2

)2
+
(
a†3

)2]
|0⟩ (1.28)

=
i
√
2
(|2⟩2|0⟩3 + |0⟩2|2⟩3) (1.29)

Surprisingly, two identical single photons are bunched after hitting a beam splitter
from different sides. In the linear optical quantum computing, the Hong-Ou-Mandel
effect is the mechanism for the logic gates.

Figure 3: Hong-Ou-Mandel effect.
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1.3 N-Photon

Let the initial state be |0⟩0|N⟩1 =
(a†1)

N
√
N !
|0⟩. After a beam splitter, the state becomes

(Ua†1)
N

√
N !
|0⟩ =

(ta†2 + ra†3)
N

√
N !

|0⟩. (1.30)

1.4 Coherent States

Let the initial state be |0⟩0|α⟩1 =D1[α]|0⟩ = eαa
†
1−α

∗a1 |0⟩. After a beam splitter, the
state becomes

eαUa†1−α
∗U†a1 |0⟩ = eαta

†
2−α

∗t∗a2eαra
†
3−α

∗r∗a3 |0⟩ (1.31)

=D2[tα]D3[rα]|0⟩ (1.32)

= |tα⟩2|rα⟩3. (1.33)

The input of a coherent state is split into a product of two coherent states. Unlike
the single-photon case, this state is not entangled.

Consider a MachZehnder interferometer with two 50:50 beam splitters of r = i√
2

and t = 1√
2
. Let the initial state be |0⟩0|α⟩1. After the first beam splitter, the state

becomes ∣∣∣∣∣∣ iα√2
〉
2

∣∣∣∣∣∣ α√2
〉
3

. (1.34)

When the state arrives at the second beam splitter, the state becomes∣∣∣∣∣∣ iα√2
〉
2

∣∣∣∣∣∣eiθα√2
〉
3

. (1.35)

where θ is a phase shift due to the difference of the two paths. The final state after
the second beam splitter is (see the figure: a2 is the new a1 and a3 is the new a0)∣∣∣∣∣∣∣

(
eiθ − 1

)
2

〉
2

∣∣∣∣∣∣∣ i
(
eiθ +1

)
2

〉
3

. (1.36)

The intensity at D1 is |α|2
∣∣∣∣ eiθ−12

∣∣∣∣2 = sin2 θ
2 |α|

2. The intensity at D2 is |α|2
∣∣∣∣ eiθ+12

∣∣∣∣2 =
cos2 θ

2 |α|
2. The two output beams are both coherent states. Thus, the phase θ can

be obtained by

I2 − I1
|α|2

= cosθ. (1.37)

However, the amplitudes have uncertainty σ(n) =
√
n̄. Thus, the phase has the

uncertainty σ(θ) ∼ 1√
n̄
. In experiments, we would like to use a coherent light (laser)

with a well-defined phase and a strong intensity such that the uncertainty in the
phase is small. However, a strong-intensity light may lead to more noise, such as
radiation pressures, thermal noises, etc. To solve this dilemma, lights with small
σ(n) are used. These lights are non-classical lights.
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