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Non-classical light, characterized by properties that defy classical electromagnetic
theory, lies at the heart of quantum optics. This field explores light behaviors such
as photon bunching, anti-bunching, and quadrature squeezing, which reveal the
quantum nature of electromagnetic fields. These phenomena enable applications
in quantum information processing, precision measurement, and fundamental tests
of quantum mechanics. This note provides a concise introduction to key concepts,
focusing on correlation functions and quadrature squeezing. Section 1 delves into
correlation functions, covering first- and second-order coherence, exemplified by
Young’s interference and the Hanbury Brown and Twiss experiment, to describe
light’s coherence and photon statistics. Section 2 introduces quadrature squeezing,
exploring squeezed states and their generation via nonlinear processes, highlighting
their role in reducing quantum uncertainty. Together, these topics offer a foundation
for understanding non-classical light and its significance in modern physics.

1 Correlation Functions

A correlation function is a mathematical tool used to measure the dependence be-
tween two or more variables. In physics, these variables are physical quantities
depending on positions and time. For example, let s1(r, t) and and s2(r, t) be the
two amplitudes of two scalar waves. The first order correlation function is

C(1)(∆r,∆t) = ⟨s∗1(r1, t1)s2(r2, t2)⟩, (1.1)

where ⟨...⟩ denotes an ensemble average.

The correlation functions are used to describe spatial and temporal coherence of
waves. The superposition of two waves is

|s1(r1, t1) + s2(r2, t2)|2 = |s1(r1, t1)|2 + |s2(r2, t2)|2 +2Re[s1(r1, t1)s
∗
2(r2, t2)]. (1.2)

The ensemble-averaged interference is

⟨2Re[s1(r1, t1)s∗2(r2, t2)]⟩ = 2Re[C(∆r,∆t)]. (1.3)

Correlation functions are called auto-correlation functions if s1 and s2 are the same
variables. If s1 is the same source as s2 and ∆r = 0, the correlation functions
measure the temporal coherence. If s1 is the same source as s2 and ∆t = 0, the cor-
relation functions measure the spatial coherence. We can define the dimensionless
correlations function g (1), 1 called the first-order correlation function or normalized
correlation function,

g (1)(∆r,∆t) =
⟨s∗1(r1, t1)s2(r2, t2)⟩√
⟨|s1(r1, t1)|2⟩⟨|s2(r2, t2)|2⟩

. (1.4)

According to the Schwartz inequality, 0 ≤ g (1) ≤ 1. The coherences are related to
g (1) by

|g (1)| = 1, coherent, (1.5)

0 < |g (1)| < 1, partially coherent, (1.6)

|g (1)| = 0, completely incoherent. (1.7)

1In the literature, people use γ (1) for classical cases and g (1) for quantum cases. Here, I use g (1)

for both the cases.
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The coherence function g (1) typically decreases as time goes on or the traveled
optical length increases. The process is called decoherence. Two main sources of
decoherence are (a) non-monochromatic light and (b) noises due to collisions or
scatterings. We might model the decoherence as

g (1)(t) = g (1)(0)exp
(
− t
τc

)
, (1.8)

where τc is the coherence time. If a light source is not monochromatic and has a
band width ∆ω, the coherent time is τc ∼ 1

∆ω .

In theories of probability and statistics, we can specify a probability distribution of
a variable X if we know all the moments of X , i.e., ⟨X⟩ , ⟨X2⟩, ⟨X3⟩,... If we want
to fully specify the relation between X and Y , we need to know not only ⟨XY ⟩ but
also the higher order terms such as ⟨X2Y 2⟩, ⟨X3Y 3⟩. One can define the high-order
autocorrelation functions are defined as

C(2)(x1,x2,x3,x4) = ⟨s∗(x1)s∗(x2)s(x3)s(x4)⟩ (1.9)

and so on. Here, xn denotes (rn, tn). One useful case is

C(2)(x1,x2,x2,x1) = ⟨I(x1)I(x2)⟩, (1.10)

which is called the intensity-intensity correlation function. The order of xn in the
correlation function does not matter for classical fields, but as we will see soon, the
order for quantum fields does matter. The second-order coherence function g (2) is
defined as

g (2)(x2 − x1) ≡ g (2)(x1,x2,x2,x1) =
C(2)(x1,x2,x2,x1)

C(1)(x1,x1)C(1)(x2,x2)
. (1.11)

In quantum optics, waves are electromagnetic fields. The scalar field s(x) is replaced
by E ≡ E · ê, where ê is a unit vector. For example, the first-order coherence function
becomes

g (1)(∆r,∆t) =
⟨E∗1(r1, t1)E2(r2, t2)⟩√
⟨|E1(r1, t1)|2⟩⟨|E2(r2, t2)|2⟩

. (1.12)

1.1 Definitions in Quantum Optics

When defining correlation functions for quantum optics, we have the following term

⟨E∗1(r1, t1)E2(r2, t2)⟩. (1.13)

Classically, the order of the product in the average does not matter. But quantumly,
we have to deal with the order carefully. Physically, correlations are measured quan-
tities. Measurement processes consist of the absorption of photons by the detectors.
Say, first the detector absorbed one photon at t1 and another photon at a later time
t2. This process is described by two annihilation operators

a(t2)a(t1)|i⟩, (1.14)
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where |i⟩ is the initial state. The probability of the process is proportional to the
norm of Eq. (1.14).

⟨i |a†(t1)a†(t2)a(t2)a(t1)|i⟩. (1.15)

Thus, we have the following summary

• All annihilation operators are on the right.

• All creation operators are on the left.

• An annihilation operator at an earlier time is on the right.

• A creation operator at an earlier time is on the left.

The correlation functions are given by the density-matrix approach

C(1) = Tr[ρE∗(t2)a†(t2)E(t1)a(t1)] (1.16)

= E∗(t2)E(t1)Tr[ρa†(t2)a(t1)], (1.17)

C(2) = Tr[ρE∗(t1)a†(t1)E∗(t2)a†(t2)E(t2)a(t2)E(t1)a(t1)] (1.18)

= E∗(t1)E∗(t2)E(t2)E(t1)Tr[ρa†(t1)a†(t2)a(t2)a(t1)] (1.19)

= Ĩ(t1)Ĩ(t2)Tr[ρa
†(t1)a

†(t2)a(t2)a(t1)]. (1.20)

We should use these correlation functions to calculate the quantum coherence func-
tions defined in Eqs. (1.11) and (1.12).

1.2 Young’s Interference and First-Order Coherent Function

Figure 1: Young’s interference.

Let the source generated single-mode photons whose annihilation operator is a. The
photons then pass the two slits. The two slits are regarded as the light sources whose
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annihilation operators are a1 and a2. We assume the two slits are equal such that

a =
1
√
2
(a1 + a2) . (1.21)

The intensity on the screen is indeed the first-order correlation function

I(t) = Ĩ(t)Tr[ρa†(t)a(t)] (1.22)

=
Ĩ(t)
2

{
Tr[ρa†1(t)a1(t)] + Tr[ρa†2(t)a2(t)] + Tr[ρa†1(t)a2(t)] + Tr[ρa†2(t)a1(t)]

}
(1.23)

=
Ĩ(t)
2

{
Tr[ρa†1(0)a1(0)] +Tr[ρa†2(0)a2(0)] +Tr[ρa†1(0)a2(0)]e

iΦ +Tr[ρa†2(0)a1(0)]e
−iΦ

}
,

(1.24)

where Φ is the phase difference due to the optical length. When the incident light is
a one-photon state, we have the state after two slits

a†|0⟩ = 1
√
2

(
a†1 + a

†
2

)
|0⟩ = 1

√
2
(|10⟩+ |01⟩). (1.25)

The first-order correlation function is

I(t) = Ĩ(t)
(
1+ cosΦ

2

)
. (1.26)

When the incident light is a two-photon state, we have the state after two slits

(a†)2|0⟩ = 1
2

(
a†1 + a

†
2

)2
|0⟩ = 1

2
(|20⟩+

√
2|11⟩+ |02⟩). (1.27)

The first-order correlation function is

I(t) = 2Ĩ(t)
(
1+ cosΦ

2

)
. (1.28)

For a n-photon state, we have

I(t) = nĨ(t)
(
1+ cosΦ

2

)
. (1.29)

It can be shown that for a coherent state, we have

I(t) = n̄Ĩ(t)
(
1+ cosΦ

2

)
. (1.30)

We have the following notes

• Interference occurs even when for a single-photon state.

• First-order correlation functions describe interferences.

• First-order correlation functions can not distinguish what kind of photon state
the light is. For number states and coherent states, the interferences are the
same as cosΦ.
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1.3 Hanbury Brown and Twiss Experiment and Second-Order
Coherent Function

Figure 2: Hanbury Brown and Twiss experiment.

First-order coherence in Youngs experiment can determine how monochromatic a
light is, or noise levels, by measuring coherent lengths. The properties revealed
by first-order coherence are related to the modes and the environments (noise).
However, first-order coherence does not tell which photon state it is, that is, if
two states are from the same mode, first-order coherence can not distinguish their
photon distribution. Say, to distinguish a number state |n⟩ and a coherent state |α⟩
from the same mode, we have to use the second-order coherence function g (2).

In the 1950s, Hanbury Brown and Twiss developed an experiment to measure
intensity-intensity correlations (see Fig. 2). The main difference from Young’s in-
terference is that there are two intensity detectors instead of one. The two optical
paths after the beam splitter lead to a time delay τ. The rates of coincident events
are measured by the coincidence counter and proportional to

C(2) = ⟨E∗(t1)a†(t1)E∗(t2)a†(t2).E(t2)a(t2)E(t1)a(t1)⟩ (1.31)

1.3.1 Classical Regime

Classically, we can write the second-order correlation function as

C(2) = ⟨I(t + τ)I(t)⟩, (1.32)

and the second-order coherent function g (2) as

g (2) =
⟨I(t + τ)I(t)⟩
⟨I(t + τ)⟩⟨I(t)⟩

. (1.33)

For a stationary light, ⟨I(t)⟩ is time-independent. The second-order coherent func-
tion g (2) becomes

g (2) =
⟨I(t + τ)I(t)⟩
⟨I(t)⟩2

. (1.34)
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The following properties can be shown (only in the classical regime),

1 ≤ g (2)(0) <∞, (1.35)

g (2)(τ) ≤ g (2)(0). (1.36)

For a chaotic light source, it can be shown that

g (2)(τ) = 1+ |g (1)(τ)|2, (1.37)

and if g (1)(τ) = e−
τ
τc ,

g (2)(τ) = 1+ e−
2τ
τc . (1.38)

For chaotic lights, it is shown g (2)(0) = 2. This is called the photon bunching effects.

1.3.2 Quantum Regime

The orders of operators in the correlation functions should be treated carefully. For
a single mode, the second-order coherent function is

g (2)(τ) =
⟨a†(t)a†(t + τ)a(t + τ)a(t)⟩
⟨a†(t + τ)a(t + τ)⟩⟨a†(t)a(t)⟩

(1.39)

=
⟨a†a†aa⟩
⟨a†a⟩2

(1.40)

= 1+
σ2(n)− n̄

n̄2
(1.41)

We can show that

g (2)(0) =

2, thermal,
1, coherent,

(1.42)

and for a number state

g (2)(0) =

0, n = 0, 1,
n−1
n , else.

(1.43)

As time increases, light becomes incoherent. We may use the result for chaotic light,

g (2)(τ) = 1+ |g (1)(τ)|2, (1.44)

and g (1)(τ)→ 0 as τ→∞. Thus as τ→∞, g (2)(τ) = 1.
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Figure 3: g (2)(τ) of various photon ensembles.

Figure 4: Photon counting statistics of various photon ensembles.

Figure 5: Experiment of single photon measurement.

Exercise 1: g (2)(0)

Show that
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(a)

g (2)(0) =
⟨a†a†aa⟩
⟨a†a⟩2

= 1+
σ2(n)− n̄

n̄2

(b) For a single mode thermal field, g (2)(0) = 2.

Exercise 2: Coherence Functions

Calculate g (2)(0) for the following cases:

(a) a state

|ψ⟩ = 1
√
2
(|0⟩+ |1⟩) . (1.45)

(b) an ensemble

ρ =
1
2
|0⟩⟨0|+ 1

2
|1⟩⟨1|. (1.46)

(c) an ensemble

ρ =
1
2
|0⟩⟨0|+ 1

2
|1⟩⟨1|+ i

2
|0⟩⟨1|+ −i

2
|1⟩⟨0| (1.47)

Hint: use

g (2)(0) =
⟨a†a†aa⟩
⟨a†a⟩2

(1.48)

Summary 1: Correlations of Light

1. Coherent light has g (1)(t) = 1 and g (2)(t) = 1. The photon number
distribution is a Poisson distribution.

2. A chaotic light has a g (1) = 0. There are many kinds of chaotic lights, for
example, thermal lights, unpolarized lights, and so on. A chaotic light
has g (2)(0) = 2, which is the photon bunching. One can distinguish
different kinds of chaotic lights by photon counting statistics. The pn of

a thermal light is proportional to e−
nℏω
kT . In general, pn of a chaotic light

can be arbitrary. It is possible that pn of a chaotic light is a Poisson
distribution. Hence, a Poisson distribution of pn does not conclude that
the light is coherent.

3. A single photon state has g (1)(t) = 1 and g (2)(0) = 0, which is a result
of the photon anti-bunching.
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2 Quadrature Squeezing

The quadrature operators X and Y , satisfy

[X,Y ] =
i
2

(2.1)

⇒ σ(X)σ(Y ) ≥ 1
4
. (2.2)

The coherent states satisfy the minimum uncertainty equations,

σ(X)σ(Y ) =
1
4

(2.3)

and

σ(X) = σ(Y ) =
1
2
. (2.4)

which is a circle in the phase space. The conditions of a quadrature squeezing are

σ(X) <
1
2
or σ(Y ) <

1
2

(2.5)

while keeping σ(X)σ(Y ) = 1
4 . Pictorially, a squeezed state is an ellipse in the phase

space with an area π
16 . Of course, we can squeeze a state in any direction other than

X or Y . We can define the rotated quadrature operator as follows

X ′(θ) =
ae−iθ + a†eiθ

2
, (2.6)

Y ′(θ) =
ae−iθ − a†eiθ

2i
, (2.7)

which represent a coordinate transform of the quadrature operators. Depending on
the squeezed axis, we have the following squeezed states. Question: Which one has
the minimum uncertainty of the photon number?

X

Y

|α, ξ〉 σ(Y ) > 1
2

σ(X) < 1
2

X-squeezed

Y -squeezed

amplitude-squeezed

phase-squeezed

Figure 6: Squeezed States.
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2.1 Squeezed Operators

Mathematically, a coherent state is generated by shifting a vacuum state in the phase
space. This is done by the displacement operator D(α),

|α⟩ =D(α)|0⟩. (2.8)

We have shown that D(α) is the evolution operator U of a oscillating current source,
that is, such a source creates a coherent state.

A squeezed state is generated by a squeeze operator,

S(ξ) = exp
(
ξ∗a2 − ξ(a†)2

2

)
, (2.9)

where ξ = reiθ , and r is the squeeze parameter. A squeezed operator is a uni-
tary operator. In principle, a unitary operator corresponds to a physical process.
Observing the quadratic terms of the creation and annihilation operators, it is
straightforward to speculate that the physical processes are nonlinear. This is
because the quadratic terms come from the square of the electric field operators,

E2 =
(
Ea+E∗a†

2

)2
. Squeeze operators have the relations

S†(ξ)S(ξ) = 1, (2.10)

S†(ξ)aS(ξ) = acoshr − a†eiθ sinhr, (2.11)

S†(ξ)a2S(ξ) =
(
acoshr − a†eiθ sinhr

)2
, (2.12)

S†(ξ)a†S(ξ) = a† coshr − ae−iθ sinhr, (2.13)

S†(ξ)(a†)2S(ξ) =
(
a† coshr − ae−iθ sinhr

)2
. (2.14)

Let’s first consider the squeezing of a vacuum state S(ξ)|0⟩. The uncertainty of the
squeezed state is

σ(X) =
1
2

√
cosh2 r + sinh2 r − 2sinhr coshr cosθ, (2.15)

σ(Y ) =
1
2

√
cosh2 r + sinh2 r +2sinh r coshr cosθ. (2.16)

When θ = 0,

σ(X) =
1
2
e−r , (2.17)

σ(Y ) =
1
2
er . (2.18)

The state S(ξ)|0⟩ is called the squeezed vacuum state, for which the expectation
value of the electric field is zero. We can obtain a more general squeezed state by
applying both D(α) and S(ξ) on a vacuum state,

|α,ξ⟩ ≡D(α)S(ξ)|0⟩. (2.19)

Displacement operators have the relations

D†(α)aD(α) = a+α, (2.20)

D†(α)a†D(α) = a† +α∗, (2.21)

which add constants and do not change σ(a) and σ(a†). This means that S(ξ)|0⟩
and D(α)S(ξ)|0⟩ have the same shapes in the phase space.
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2.2 Number-State Representations

Let |ξ⟩ = |0,ξ⟩ expressed in the number basis,

|ξ⟩ =
∑
n

Cn|n⟩., (2.22)

where

Cn =

0, odd,
in√
coshr

√
n!

2n/2( n2 )!
einθ/2 tanhn/2 r, even.

(2.23)

For a general squeezed state, |α,ξ⟩, the coefficients are

Cn = exp
[
−1
2
|α2| − 1

2
(α∗)2eiθ tanhr

] ( eiθ tanhr
2

)n/2
√
n!coshr

Hn

[
α +α∗eiθ tanhr
√
2eiθ tanhr

]
. (2.24)

Figure 7: Photon counting of squeezed states. α = 2

Figure 8: Photon counting of squeezed states. α = 5
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