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Number (Fock) states are extremely quantum in the sense that there is no classical
analog. For example, the expectation value of the electric field is time-independent.
Hence, pure number states can easily exhibit quantum properties such as superpo-
sition and entanglement. The approach of using these discrete states for encoding
qubits is called discrete variable (DV) encoding. However, there are two main dis-
advantages to using DV encoding. First, DV states may be too fragile. Second, it
is hard to prepare such extremely quantum states. These led to the development of
continuous variable (CV) encoding.

In the example of a harmonic oscillator, n is the discrete number, and x, p are the
continuous variables. All the quantum states can be represented on a number basis
and a continuous variable basis.

In this note, we will use the quadrature operators X and Y to describe the quantum
state. They can be regarded as continuous variables. Another reason to use CV is
that CV has the classical counterpart so that it is easier to have intuitive pictures.

Lets explore some methods for encoding qubits using light.
Discrete Variable (DV) Encoding: In DV encoding, polarization or photon-number
degrees of freedom are employed to create and encode qubits from light. Examples
include using horizontal and vertical polarizations of a single photon or the vacuum
and single-photon excitation of a quantized light mode. However, DV encoding
can be expensive for multiple-qubit operations, such as Bell-state measurements in
optical quantum computation and communication.

Continuous Variable (CV) Encoding: CV encoding views the structure of a quan-
tized field of light in a continuous-variable space. Qubit encoding using coherent
states of opposite phases (such as | ±α⟩ or their superpositions like |α⟩ ± |−α⟩) has
been investigated. These superposed coherent states are known as cat-state qubits,
inspired by Schrödingers cat paradox. Cat-state qubits allow nearly deterministic
Bell-state measurements and two-qubit gate operations in a simpler way, but they
are sensitive to detection inefficiency and decoherence due to photon loss.

Hybrid Approaches: Combining DV and CV approaches provides powerful tools
for photonic quantum computing and communication. Previous work demonstrated
DV-CV hybrid entanglement and transformation between DV and CV states. Recent
research reports a qubit converter that transforms a DV qubit into a cat-state qubit,
bridging the gap between discrete and continuous-variable representations.

Figure 1: Photon counting of different quantum lights.
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Figure 2: Phase space of different quantum lights.

1 Phase Space Pictures

The state of a classical particle is fully determined by its x and p. A useful way
to represent the states is the phase space (x,p), where the horizontal axis is x and
the vertical axis is p. A state of a classical particle is one point in the phase phase.
The time evolution of a state is the trajectory in the phase space. The trajectory
(x(t),p(t)) contains all the information of the particle. The classic example is the
harmonic oscillator with

x(t) = x0 cos(ωt +ϕ) , (1.1)

p(t) = −ωx0 sin(ωt +ϕ) , (1.2)

or in the dimensionless expression

x̃(t) =
x(t)
x0

= cos(ωt +ϕ) , (1.3)

p̃(t) =
p(t)
ωx0

= −sin(ωt +ϕ) . (1.4)

The state travels along the trajectory, a unit circle (see Fig. 3).
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Figure 3: A classical state is a point in the phase space. The motion of a state is a
trajectory. In the case of a harmonic oscillator, the trajectory is a circle.

An ensemble of classical particles is described by the phase space probability density
function f (x,p), where to find a particle with a position x and a momentum p is
given by

f (x,p)dxdp, (1.5)

and the normalization condition is∫
dx

∫
dpf (x,p)dxdp = 1. (1.6)

Classically, the function f (x,p) of a pure state, i.e., a single particle, is a delta
function f (x,p) = δ(x − x0)δ(p − p0). We have made the analogies x ↔ X and
y↔ Y . One question arises: can we define a function similar to f (x,p) to describe
states or ensembles of photons? The problem is that a quantum state can not have
exact X and Y simultaneously. Thus, a quantum state is not a single point in the
phase space. Recall the relations

X =
a+ a†

2
, (1.7)

Y =
a− a†

2i
. (1.8)

For a coherent state |α⟩, we have the relations

⟨X⟩ = α +α∗

2
, (1.9)

⟨Y ⟩ = α −α∗

2i
. (1.10)

As you can show σ(X) = σ(Y ) = 1/2 for a coherent state, which means that a state
in the phase space is not a point but a blurred circular cloud (see Fig. 4). The
size of the cloud reflects the uncertainty relations. Coherent states are the states
satisfying the minimum uncertainty relations. Generally, an arbitrary state can have
an extensive distribution in the phase space.
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Figure 4: A coherent state is a fuzzy circle in the phase space.

A mapping of a state |ψ⟩ or an ensemble to a distribution in the phase space (X,Y )
(or equivalently, the complex α space.) provides a physical picture. However, a
mapping |ψ⟩ → f (X,Y ) is not uniquely defined. The problem is that X and Y are
non-commutative operators. Many attempts exist to define a probability density
f (X,Y ) or f (α). We are going to introduce the three most used definitions,

• Wigner distribution

• Q-function

• P-function

Note that the definitions and calculations of these functions are quite mathematically
involved. These functions serve as quantitative tools to describe the phase space
probability densities. It is fine to have a qualitative picture in mind first and know
more calculations when it is needed.

2 Coherent States

We have shown that the number states |n⟩ do not behave similarly to the classical
fields. For example, the expectation value ⟨n|Ê|n⟩ is not only static but also zero. A
classical field is a field whose amplitude is a harmonic function of t, i.e., exp(±iωt).
Since the number states form a complete set of the basis vectors, all the photon
states, including the classical field, can be written on a number-state basis. Hence,
we write a classical field Ecl(r, t) as a superposition of the number states,

|classical⟩ =
∑
n

Cn|n(t)⟩ =
∑
n

Cne
−inωt |n(0)⟩. (2.1)

The coefficients Cn are to be determined to satisfy the following properties. The
classical field Ecl(r, t) is the expectation value of the electric field of the classical
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state,

Ecl(r, t) = ⟨classical|Ê|classical⟩, (2.2)

where for a mode of frequency ω, the classical field Ecl(r, t) is sinusoidal,

Ecl(r, t) = Eω(r)e−iωt+ϕ . (2.3)

A classical field has two features: the harmonic oscillation term e−iωt and the phase
ϕ. Although the expectation value by Eq. (2.3) defines the exact values of the
amplitude and the phase, the amplitude and phase of the electric field of a state |ψ⟩,
in general, have uncertainties. Hence, the amplitude and phase of a state should be
described by probability distributions.

Note 1: Coherent State

A coherent state is a most classical state in which the amplitude is a finite
constant, the phase grows as ωt, and the uncertainties of the amplitude and
phase are minimized.

Below, we first discuss how to obtain the phase distribution of a state |ψ⟩, and find
the coefficient Cn of a coherent state.

2.1 Quantum Phase

In quantum optics, the electric field E of an arbitrary photon state |ψ⟩ has the
uncertainties in both its amplitude and phase, that is, ⟨E2⟩ , 0 and ⟨ϕ2⟩ , 0.
Indeed, we have not talked about obtaining ϕ of a photon state |ψ⟩. Note that the
phase ϕ is not the phase of a wavefunction but the phase of the electric field. Since
E is an operator but not a number, it turns out that there are many definitions of the
phase ϕ. Moreover, the phase ϕ of a state |ψ⟩ is not a single value but a distribution
with a finite variance. We will define a phase distribution P (ϕ) where P (ϕ)dϕ is
the probability of finding the state to have a phase ϕ. Here, we follow Susskind
and Glogower’s approach to obtain the phase distribution. The SusskindGlogower
operators are defined by

A ≡ (aa†)−
1
2a = (N +1)−

1
2a, (2.4)

A† ≡ a†(aa†)−
1
2 = a†(N +1)−

1
2 . (2.5)

If we temporarily treat a as a complex number, a = |a|exp iϕ, the operator A will
look as A = exp iϕ. This is the motivation of the definitions, which is to make the
operator A taking out the phase factor exp iϕ of a state. The properties of the SG
operators are

A|n⟩ =

|n− 1⟩, n , 0,
0, n = 0,

(2.6)

A†|n⟩ = |n+1⟩, (2.7)
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in the number state bases,

A =
∑
n

|n⟩⟨n+1|, (2.8)

A† =
∑
n

|n+1⟩⟨n|, (2.9)

AA† = 1, (2.10)

A†A = 1− |0⟩⟨0|. (2.11)

The eigenstate of A is |ϕ⟩,

A|ϕ⟩ = eiϕ |ϕ⟩. (2.12)

The state |ϕ⟩ in the number states is

|ϕ⟩ =
∑
n

einϕ |n⟩. (2.13)

The state given by Eq. (2.13) is not normalized. The states |ϕ⟩ and |ϕ′⟩ are not
orthogonal, that is, ⟨ϕ′ |ϕ⟩ , 0. Using the fact

1
2π

∫ 2π

0
ei(n−n

′)ϕdϕ = δn,n′ , (2.14)

we can show that

1
2π

∫ 2π

0
dϕ|ϕ⟩⟨ϕ| = 1. (2.15)

Derivation 1: Identity with Phase States

Let |ψ⟩ be an arbitrary state. In the number state bases, it is

|ψ⟩ =
∑
n

Cn|n⟩. (2.16)

Applying the operator in Eq. (2.15) on the state, we obtain

1
2π

∫ 2π

0
dϕ|ϕ⟩⟨ϕ|ψ⟩ =

∑
Cn

1
2π

∫ 2π

0
dϕ|ϕ⟩⟨ϕ|n⟩ (2.17)

=
1
2π

∑
n

∫
dϕ|ϕ⟩Cne−inϕ (2.18)

=
1
2π

∑
n,m

∫
dϕe imϕ |m⟩Cne−inϕ (2.19)

=
∑
n,m

δmnCn|m⟩ (2.20)

=
∑
n

Cn|n⟩ (2.21)

= |ψ⟩, (2.22)
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which proves the operator in Eq. (2.15) is an identity.

The phase distribution P (ϕ) of a state |ψ⟩ is

P (ϕ) ≡ 1
2π
|⟨ϕ|ψ⟩|2 (2.23)

=
1
2π

∣∣∣∣∣∣∣∑n Cne
−inϕ

∣∣∣∣∣∣∣
2

. (2.24)

The phase distribution P (ϕ) is normalized,∫ 2π

0
P (ϕ)dϕ = 1. (2.25)

The phase distribution P (ϕ) of an ensemble is

P (ϕ) = 1
2π
⟨ϕ|ρ|ϕ⟩. (2.26)

Note 2: Phase of a Phase State

The phase distribution function P (ϕ) reveals the phase distribution of a state
|ψ⟩. Since N and A do not commute ([N,A] = −A), a state can not have a
single phase but a phase distribution. The phase state |ϕ′⟩ is supposed to
have a specific phase ϕ′ . However, since the phase state is not normalized, It
is not a physical tool but a mathematical one. We consider an approximate
phase state, which is normalized,

|ϕ′⟩app ≡
Nmax∑
n=0

einϕ
′ |n⟩

√
Nmax +1

. (2.27)

The phase distribution function of |ϕ′⟩app is

P (ϕ) = 1
2(Nmax +1)π

∣∣∣∣∣∣∣∣
sin

[ (Nmax+1)(ϕ−ϕ′)
2

]
sin

[
ϕ−ϕ′
2

]
∣∣∣∣∣∣∣∣
2

. (2.28)

Figure 5: Phase distribution functions of |ϕ1 = 0.5π⟩ and |ϕ2 = 0.7π⟩. The
maximum number is Nmax = 12.
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� �
1 import matplotlib

2 import matplotlib.pyplot as plt

3 import numpy as np

4 # Data for plotting

5 phi1 = 0.5 * np.pi

6 phi2 = 0.7 * np.pi

7 Nmax = 12

8 phi = np.arange(0.0, 2.0 * np.pi, 0.01)

9 # define the phase distribution function

10 def phase_dist_func(x,y):

11     return np.sin(Nmax*(x-y)/2)**2./np.sin((x-y)/2)**2/Nmax/(2*np.pi)

12 phase_dist_1 = phase_dist_func(phi,phi1)

13 phase_dist_2 = phase_dist_func(phi,phi2)

14 ## plot

15 fig, ax = plt.subplots()

16 ax.plot(phi, phase_dist_1,label=r’$|\phi_1=0.5\pi\rangle$’)
17 ## r: raw string

18 ax.plot(phi, phase_dist_2,label=r’$|\phi_2=0.7\pi\rangle$’)
19 ## r: raw string

20 ax.set(xlabel=’$\phi$ ’, ylabel=’$\mathcal{P}(\phi)$’,
21        title=’Phase Distribution Function of a Phase State’)

22 ax.grid()

23 plt.legend()

24 fig.savefig("phase_dist.png", dpi=300)

25 plt.show()� �
Figure 6: Python codes.

Exercise 1: Phase Distribution Function

Show Eq. (2.28). Use Eq. (2.24). The summation is a geometric series.

2.2 Coherent States

We have shown that a phase state |ϕ⟩ has a well-defined phase. However, as a
classical field, not only the phase but also the field amplitude should be well-defined;
that is, we expect that ⟨E⟩ does not vanish, and σ(E) is small. Since the phase states
are neither normalized nor physical, we must find other states.

The goal is to find the states |α⟩ such that the expectation of the electric field ⟨α|E|α⟩
is proportional to the classical field Eω(r) +E∗ω(r). By observing that

Eω(r) =

[
Eω(r)a+E∗ω(r)a†

]
2

, (2.29)

one finds that if the states |α⟩ are the eigenstates of the annihilation operator a,

a|α⟩ = α|α⟩, (2.30)

with the eigenvalues α, the expectation value ⟨α|E|α⟩ is the same as the classical
field. Since the operator a is not hermitian, the eigenvalues α can generally be
complex numbers. It turns out that the states |α⟩, called “coherent states”, are the
most classical states. Let’s find out the coherent states in the number state bases.
We expand the coherent states as

|α⟩ =
∑
n

Cn|n⟩, (2.31)

and plug it in Eq. (2.30),

a|α⟩ =
∑
n

Cna|n⟩ = α
∑
n

Cn|n⟩ (2.32)

⇒
∑
n

Cn
√
n|n− 1⟩ = α

∑
n

Cn|n⟩. (2.33)
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We obtain

Cn+1 = α
Cn√
n+1

, (2.34)

Cn =
αn
√
n!
C0, (2.35)

and thus

|α⟩ = C0

∑
n

αn
√
n!
|n⟩. (2.36)

The normalization condition fixes the coefficient C0,

⟨α|α⟩ = |C0|2
∑
m,n

αn(α∗)m
√
n!m!

⟨m|n⟩, (2.37)

where one finds

C0 = e
− |α|

2
2 . (2.38)

The coherent states are

|α⟩ = e−
|α|2
2

∑
n

αn
√
n!
|n⟩ (2.39)

= e−
|α|2
2

∑
n

αn(a†)n

n!
|0⟩ (2.40)

= e−
|α|2
2 eαa

†
|0⟩. (2.41)

Exercise 2: Normalization Constant

Show Eq. (2.38). Begin with Eq. (2.37).

The expectations are

⟨α|E|α⟩ =
〈
α

∣∣∣∣∣∣∣
[
Eω(r)a+E∗ω(r)a†

]
2

∣∣∣∣∣∣∣α
〉

(2.42)

= Re[αEω(r)] (2.43)

⟨α|abs[E]2|α⟩ =
〈
α

∣∣∣∣∣∣∣∣
abs

[
Eω(r)a+E∗ω(r)a†

]2
4

∣∣∣∣∣∣∣∣α
〉

= abs[Re[αEω(r)]]2 +
|Eω(r)|2

4
. (2.44)

The standard deviation of the electric field is

σ(E) =
|Eω(r)|

2
. (2.45)
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The standard deviation is relatively small compared to the field amplitude when |α|
is large. We can see this by dividing σ(E) with ⟨α|E|α⟩,

σ(E)
⟨α|E|α⟩

=
|Eω(r)|

2Re[αEω(r)]
. (2.46)

The coherent states |α⟩ indeed have the minimum uncertainty. Using the quadrature
operators X and Y , one can show that the coherent states have

σ(X) = σ(Y ) =
1
2
. (2.47)

Exercise 3: Uncertainty Relations

Show Eq. (2.47). Hints:

(a) ⟨α|X |α⟩ = α+α∗
2

(b) ⟨α|X2|α⟩ =
(
α+α∗
2

)2
+ 1

4 . Note that (a+ a
†)2 = a2 +2a†a+

(
a†

)2
+1

The physical meaning of α is the dimensionless amplitude, which is seen from that
the average number n̄ of a coherent state |α⟩ is

n̄ = ⟨α|N |α⟩ = ⟨α|a†a|α⟩ = |α|2. (2.48)

The standard deviation σ(N ) is

σ(N ) = |α| = n̄
1
2 . (2.49)

The standard deviation σ(N ) over the average number n̄ is

σ(N )
n̄

= n̄
−1
2 . (2.50)

The probability pn of measuring the number state |n⟩ is a Poisson distribution

pn = |Cn|2 = e−|α
2| |α|2n

n!
= e−n̄

n̄n

n!
. (2.51)

The phase distribution function P (ϕ) of a coherent state is

P (ϕ) = e−|α|
2

2π

∣∣∣∣∣∣∣∑n αn
√
n!

∣∣∣∣∣∣∣
2

. (2.52)

Let α = |α|iϕ̄ . One can show that as n̄ = |α|2 is large, the distributions become
approximately the Gaussian distributions (See Ref. [1]),

pn ≃ (2πn̄)−1/2 e−
(n−n̄)2
2n̄ , (2.53)

P (ϕ) ≃
√

2n̄
π
e−2n̄(ϕ−ϕ̄)

2
. (2.54)
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2.3 Displaced Vacuum States

The physical meaning of α is the dimensionless (complex) amplitude of a coherent
state. The vacuum state is indeed a coherent state in the limit α → 0. Conversely,
a coherent state is obtained by changing the complex amplitude α of the vacuum
state. Mathematically, such a shift of α is done by the displacement operator D(α),

|α⟩ =D(α)|0⟩. (2.55)

The displacement operator D(α) has the explicit form

D(α) = exp
(
αa† −α∗a

)
. (2.56)

To show this, first consider the special case of BakerCampbellHausdorff formula, if

[A, [A,B]] = [B, [A,B]] = 0, (2.57)

we have

eA+B = e−
1
2 [A,B]eAeB (2.58)

= e
1
2 [B,A]eBeA. (2.59)

With A = αa†, B = −α∗a, and [A,B] = |α|2, the displacement operatorD(α) becomes

D(α) = e−
|α|2
2 eαa

†
e−α

∗a. (2.60)

Using the relations

e−α
∗a|0⟩ =

(
1−α∗a+ (−α∗a)2

2!
+ ...

)
|0⟩ = |0⟩, (2.61)

we obtain

D(α)|0⟩ = e−
|α|2
2 eαa

†
e−α

∗a|0⟩ (2.62)

= e−
|α|2
2 eαa

†
|0⟩ (2.63)

= e−
|α|2
2 eαa

†
|0⟩ (2.64)

= e−
|α|2
2

∑
n

αn(a†)
n

n!
|0⟩ (2.65)

= e−
|α|2
2

∑
n

αn
√
n!
|n⟩ (2.66)

= |α⟩. (2.67)

The displacement operator D(α) is unitary and satisfies the relation

D(α)D†(α) =D†(α)D(α) = 1, (2.68)

D†(α) =D(−α). (2.69)

The displacement operators satisfy the law of addition; operations by two subse-
quent displacement operator D(α) and D(β) give a total displacement operator

D(α)D(β) = eiIm[αβ∗]D(α + β). (2.70)

We see that the total displacement is α + β, that is, the sum of the displacements
of the individual displacement operators. An extra phase Im[αβ∗] is the quantum
feature, and note although the total displacement does not depend on the order of
the operators, the phase does depend.
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Note 3: Displacement Operator

For now, a displacement operator is just a mathematical tool. Later, as we
learn light-matter interaction, we will know that a displacement operator is
the evolution operator of a sinusoidal driving source, Hi(t) ∼ sin(ωt +ϕ). If
we turn on a sinusoidal driving source, the vacuum state will be shifted in the
complex α space. This is one method to generate coherent states.

2.4 Dynamics of Coherent States

The dynamics of a coherent state |α⟩ is given by the Schrödinger’s picture,

|α(t)⟩ = e−i
Ht
ℏ |α(0)⟩ (2.71)

= e−i
ω
2 te−

|α|2
2

∑
n

αne−inωt
√
n!
|n⟩ (2.72)

= e−i
ω
2 t |α(0)e−iωt⟩. (2.73)

Thus, the amplitude α(t) is

α(t) = α(0)e−iωt . (2.74)

Although every photon mode Eω(r) can be pretty different from one system to
another system, we can use the dimensionless quadrature operators X̂ and Ŷ to
describe the dynamics. Recall that X̂ is analogous to the position operator, and Ŷ
is analogous to the momentum operator. We can express a coherent state on the X
basis,

ψα(X) = ⟨X |α⟩, (2.75)

where |X⟩ is the eigenvector of X

X̂ |X⟩ = X |X⟩. (2.76)

To find ψα(X), we begin with

⟨X |a|α⟩ = α⟨X |α⟩ (2.77)

⇒⟨X |X̂ + iŶ |α⟩ = α⟨X |α⟩ (2.78)

⇒
(
X +

∂
∂X

)
⟨X |α⟩ = α⟨X |α⟩ (2.79)

⇒
∂ψα(X)
∂X

= (α −X)ψα(X) (2.80)

⇒ψα(X) =
√

2
π
e−

(X−Re[α])2
2 eiIm[α]X , (2.81)
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We used the normalization condition to derive the last step. The wavefunction
ψα(X) is a Gaussian distribution, and its peak position is

Xp(t) = Re[α(t)] (2.82)

= |α(0)|cos(ϕ0 −ωt) . (2.83)

with α(0) = |α(0)|eiϕ0 . The peak position Xp(t) is the same as that of a classical
harmonic oscillator. Also the wavefunction ψα(X) has an minimum spreads of X
and P . Thus, a coherent state is the most classical state.

Summary 1: Coherent States

Coherent states are

• eigenstates of the annihilation operator a.

• displaced vacuum states.

• most classical states whose phase and amplitude distributions are nar-
row.

• most classical states whose X and Y distributions are narrow.

• minimum uncertainty states.

2.5 Properties of Coherent States

2.5.1 Orthogonality

Two coherent states |α⟩ and |β⟩ are not orthogonal,

⟨β|α⟩ = e−
(|α|2+|β|2)

2

∑
n,m

(β∗)m(α)n
√
m!n!

⟨m|n⟩ (2.84)

= e−
(|α|2+|β|2)

2

∑
n

(β∗)n(α)n

n!
(2.85)

= e−
(|α|2+|β|2)

2 eβ
∗α (2.86)

= e−
|α−β|2

2 e
β∗α−βα∗

2 , (2.87)

which does not vanish.

2.5.2 Identity

The identity can be expressed with the coherent states,∫
d2α
π
|α⟩⟨α| ≡

∫
dRe[α]dIm[α]

π
|α⟩⟨α| = 1. (2.88)
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Derivation 2: Identity with Coherent States

The proof of Eq. (2.88) is as follows. Let α = reϕ and.

dα2 = dRe[α]dIm[α] = rdrdϕ. (2.89)

The left hand side of Eq. (2.88) becomes∫
rdrdϕ

π
|α⟩⟨α| =

∫
rdrdϕ

π
e−r

2
∑
m,n

ei(n−m)ϕrm+n

n!
|m⟩⟨n| (2.90)

=
∑
n

∫
dre−r

2
2r2n+1

n!
|n⟩⟨n| (2.91)

=
∑
n

∫
due−uun

n!
|n⟩⟨n| (2.92)

=
∑
n

|n⟩⟨n| = 1. (2.93)

2.5.3 Coherent State Representations of Operators

Any operator X can be expressed in the coherent state bases with the identity
Eq. (2.88),

X =
∫
d2α
π

∫
d2β

π
|α⟩⟨α|X |β⟩⟨β|. (2.94)

However, coherent states are not orthogonal, so the coherent states form an over-
complete set of bases.1 It is possible to write X in the coherent state diagonal
form.

An operator X is uniquely determined by ⟨α|X |α⟩. The diagonal element ⟨α|X |α⟩
in the number state basis is

⟨α|X |α⟩ = exp−|α|2
∑
m,n

⟨n|X |m⟩αm(α∗)n
√
m!n!

, (2.95)

indicating that ⟨α|X |α⟩ contains all the information of the elements ⟨n|X |m⟩, which
forms a complete set.

Coherent state diagonal representation. Suppose that X has a series expansion
of a and a† in the antinormal ordering,

X =
∑
mn

χAnma
n(a†)m, (2.96)

1See Se. 5.4. of Ref. [2] for a more rigorous discussion.
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where χAnm is a c-number. The superscript A denotes the antinormal ordering.
Inserting the identity, we obtain

X =
∑
mn

χAnma
n

(∫
d2α
π
|α⟩⟨α|

)
(a†)m (2.97)

=
∫
d2αχA(α)|α⟩⟨α| (2.98)

where

χA(α) =
1
π

∑
mn

χAnmα
n(α∗)m, (2.99)

is a c-number.

3 Phase Space Distributions

Given a density matrix ρ, there are three important distribution functions which are
the quantum analogs of the classical probability density f (x,p).

3.1 Wigner Distribution

The Wigner function W (α) is defined as

W (α) =
∫
d2η

π2 e
η∗α−ηα∗χW (η), (3.1)

where the characteristic function χW (η) is

χW (η) = Tr
[
ρeηa

†−η∗a
]
. (3.2)

Exercise 4: Normalization

Show that ∫
d2α

π2 e
η∗α−ηα∗ = δ2(η) ≡ δ(Re[η])δ(Im[η]), (3.3)

and use the result and Eq. (3.1) to show∫
d2αW (α) = 1. (3.4)

Hint: a delta function can be expressed as

δ(x) =
1
2π

∫
eikxdk. (3.5)

Hint: let α = x + iy and use the identity δ(x) = 1
2π

∫
eiqxdq.
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The ensemble average of an operator X in this representation is

⟨X⟩ =
∫
d2αχW (α)W (α), (3.6)

where

χW (α) =
∑
n,m

χWnmα
n(α∗)m (3.7)

The coefficient χWnm is the Weyl(symmetric)-ordering representation of an operator
X ,

X =
∑
m,n

χWnm

(
(a†)nam + am(a†)n

2

)
. (3.8)

3.2 GlauberSudarshan P-function

The P-function is defined by

ρ =
∫
d2αP(α)|α⟩⟨α|, (3.9)

and satisfies the normalization condition

1 = Tr[ρ] =
∫
d2αP(α). (3.10)

The normal-ordering characteristic function can obtain the P-function

P(α) =
∫
d2η

π2 e
η∗α−ηα∗χN (η), (3.11)

where the characteristic function χN (η) is

χN (η) = Tr
[
ρeηa

†
e−η

∗a
]
. (3.12)

The ensemble average of an operator X in this representation is

⟨X⟩ =
∫
d2αχN (α)P(α), (3.13)

where

χN (α) =
∑
n,m

χNnm(α
∗)nαm (3.14)

The coefficient χNnm is the normal-ordering representation of an operator X ,

X =
∑
m,n

χNnm(a
†)nam. (3.15)
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Note 4: Classical and Nonclassical States

A state with P(α) < 0 is a nonclassical state.

3.3 Q-function

The Q-function is defined by

Q(α) =
1
π
⟨α|ρ|α⟩, (3.16)

which is always positive since it is the diagonal element of the density matrix. The
function Q(α) satisfies

0 ≤Q(α) ≤ 1
π
, (3.17)

and

Tr[ρ] =
∫
d2αQ(α) = 1. (3.18)

The Q-function can be obtained by the antinormal-ordering characteristic function

Q(α) =
∫
d2η

π2 e
η∗α−ηα∗χA(η), (3.19)

where the characteristic function χA(η) is

χA(η) = Tr
[
ρe−η

∗aeηa
†
]
. (3.20)

The ensemble average of an operator X in this representation is

⟨X⟩ =
∫
d2αχA(α)Q(α), (3.21)

where

χA(α) =
∑
n,m

χAnmα
n(α∗)m. (3.22)

The coefficient χAnm is the antinormal-ordering representation of an operator X ,

X =
∑
m,n

χAnma
n(a†)m. (3.23)
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W (α) Q(α) P(α)

coherent state |α0⟩ 2
π e
−2|α−α0|2 1

π e
−|α−α0|2 δ2(α −α0)

thermal ensemble 1
π(n̄+1/2) exp

(
− |α|

2

n̄+1/2

)
1

π(n̄+1) exp
(
− |α|

2

n̄+1

)
1

π(n̄) exp
(
− |α|

2

n̄

)
pure ensemble |1⟩⟨1| −(1− 4|α|2) 2π e

−2|α|2 |α|2
π e
−|α|2 singular

Table 1: Examples of W (α), Q(α), and P(α)

Summary 2: Coherent States

(a) The phase space of photon states or ensembles is described by the two-
dimensional complex α plane.

(b) The real part and imaginary part of α are related to the quadrature
operator X and Y .

X = Re[α], (3.24)

Y = Im[α]. (3.25)

(c) A coherent state |α0⟩ is a fuzzy circle on the complex α plane.

(d) The coherent states are not orthogonal, so they are overcomplete.

(e) There are three ways to write the probability density

• Wigner distribution W (α): symmetric ordering

• Q-function Q(α): antinormal ordering

• P-function P(α): normal ordering

4 Recent Development

• Gaussian quantum information, Gaussian State: [3]

• Non-Gaussian quantum states, continuous-variable quantum systems, Wigner
function, Wigner negativity: [4]

• Quantum teleportation protocol for Gaussian states

• Encoding a qubit in an oscillator, GKP code

• Cat states

• Circuit quantum electrodynamics, superconductor qubit, transmon qubit, mi-
crowave
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