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1 Canonical Quantization 2

In the modern framework of physics, quantum mechanics is a complete theory that
becomes a classical theory in a macroscopic world. For example, F = ma approx-
imates quantum mechanics in the limit of large objects. However, the classical
theories were discovered first, such as F = ma and the Maxwell’s equaitons. The
quantum forms of these classical theories were not known. Physicists developed
quantum theories from these classical theories. Such a process is called “quantiza-
tion”, which makes the new theory have discrete physical properties.

One of the quantization approaches is to find the canonical coordinates of classical
theories and let them have a nonzero commutation relation. For example, [x,p] = i~

The strategy to quantize fields is essentially the same for a harmonic oscillator. We
think of electromagnetic modes as oscillations. Every mode with a specific frequency
ω behaves as a harmonic oscillator.

1 Canonical Quantization

The steps to quantize a harmonic oscillator are summarized as follows

Note 1: Quantization of a Harmonic Oscillator

1. Find the canonical variables with the total energy quadratic in both vari-
ables. The Hamiltonian of a harmonic oscillators consists of canonical
variables x and p.a

total energy =
p2

2m
+
mω2x2

2

2. Replace the classical variables x and p by x̂ and p̂ and obtain the
Hamiltonian.

H =
p̂2

2m
+
mω2x̂2

2

3. Impose the commutation relation

[x̂, p̂] = i~

4. Make changes of variables to â and â†

a =

√
mω
2~

(
x+

ip

mω

)
,

a† =

√
mω
2~

(
x −

ip

mω

)
,

and obtain

H = ~ω
(
a†a+

1
2

)
aCanonical variables are initially from the classical mechanics. Classically, the canonical

coordinate q and canonical momentum p satisfy the Poisson bracket relation. In canonical
quantization, the Poisson bracket is replaced by the commutation relation.
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The quantization of a particle in a quadratic potential inspired scientists to learn
how to quantize other oscillations. For any other harmonic oscillations, the idea
is first to find the canonical variables. For electromagnetic waves, we will use the
analogies

particle : x ∼ a+ a†, p ∼ −a+ a† (1.1)

Light : E ∼ a+ a†, B ∼ −a+ a† (1.2)

Note 2: Physical meaning of a and a†

(a) a and a† can be thought as the complex amplitudes of oscillation. a
is the amplitude of a positive-frequency oscillation e−iωt , and a† is the
amplitude of a negative-frequency oscillation eiωt .

(b) If we ignore the coefficients, x = (a + a†)/2 and p ∼ (a − a†)/(2i) are
indeed the real part and the imaginary part of the amplitude.

Note 3: Classical Mechanics

The Hamiltonian H(qi ,pi) of a classical system can be written as a function
of the canonical coordinates qi and canonical momentums pi . Canonical
variables, by definition, satisfy the Poisson bracket

{qi ,pj} = δij . (1.3)

The definition of the Poisson bracket is

{f ,g} =
∂f

∂qi

∂g

∂pi
−
∂g

∂qi

∂f

∂pi
. (1.4)

The dynamical equations of a physical quantity A are given by

dA
dt

= {A,H}. (1.5)

Using x and p as an example, the Hamiltonian can be written as H = p2

2m +
V (x). The equations of motions are given by Eq. (1.5),

dx
dt

=
p

m
, (1.6)

dp

dt
= −∂V

∂x
. (1.7)

In canonical quantization, the Poisson brackets are replaced by the commuta-
tors.
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2 Mode Functions As Canonical Operators

The Maxwell’s equations in matter read

∇ · (ε(r)E) = 0 (2.1)

∇ ·B = 0 (2.2)

∇×E = −∂B
∂t

(2.3)

∇×B = µ(r)ε(r)
∂E
∂t

(2.4)

Since the Maxwell’s equations are linear differential equations, to find the solution
is indeed an eigenvalue problem. The eigenvalue is ω, and the the eigenmodes are

Ecω(r, t) = Eω(r)e−iωt, (2.5)

Bcω(r, t) =Bω(r)e−iωt. (2.6)

Here, Eω and Bω are complex functions, and the superscript c indicates that the
field Ecω(r, t) is a complex number. Later, we will use them to construct real mode
functions. The dielectric function ε(r) and permeability µ(r) determine the field
profiles of the mode functions. The total field is a Fourier integral of the mode
functions.

E(r, t) =
∫ ∞
−∞
α(ω)Eωe−iωt(r)dω, (2.7)

where α(ω) is the Fourier component.

2.1 Single Mode

For an electromagnetic mode of a frequency ω, we look for real solutions of the
forms,

Eω(r, t) = Eω(r)e−iωt +E∗ω(r)eiωt (2.8)

Bω(r, t) =Bω(r)e−iωt +B∗ω(r)eiωt, (2.9)

which satisfies the Maxwell equations. The solutions to the Eω(r) and Bω(r) will
depend on the spatial arrangement of the ε(r) and µ(r). The complex field Eω(r)
satisfies

∇ · (ε(r)Eω(r)) = 0, (2.10)

∇× (∇×Eω(r)) = µ(r)ε(r)ω2Eω(r). (2.11)

One can solve the above equations analytically for simple geometries or numerically
when geometries are more complicated. Once the Eω(r) is obtained, the magnetic
field Bω(r) is given by

∇×Eω(r) = iωBω(r)

⇒Bω(r) =
∇×Eω(r)

iω
. (2.12)
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The total energy of the mode is

Hω =
∫
dv

(
ε(r)E2

ω(r)
2

+
B2ω(r)
2µ(r)

)
, (2.13)

which is similar to

H =
p2

2m
+
mω2x2

2
. (2.14)

with the analogies

x ∼ Eω(r), (2.15)

p ∼ Bω(r). (2.16)

It is natural to speculate1 that

Eω(r) ∼ Eω(r)a+E∗ω(r)a†, (2.17)

Bω(r) ∼ −Bω(r)a+B∗ω(r)a†. (2.18)

We define the following field operators

Eω(r) =

[
Eω(r)a+E∗ω(r)a†

]
2

, (2.19)

Bω(r) =
i
[
−Bω(r)a+B∗ω(r)a†

]
2

, (2.20)

with the normalization conditions∫
dvε|Eω(r)|2 = ~ω. (2.21)

By substituting Eqs. (2.19) and (2.20) into Eq. (2.13), we derive the Hamiltonian for
a single electromagnetic mode,

Hω = ~ω
(
a†a+

1
2

)
. (2.22)

All the observables contain the creation and annihilation operator. We can first solve
the dynamics of a(t) and obtain all the dynamics. Using the Heisenberg’s picture,
the equation reads

∂a
∂t

=
i
~
[H, a] (2.23)

= −iωa, (2.24)

which has the solution

a(t) = a(0)e−iωt. (2.25)

The operator a†(t) is the hermitian conjugate of a(t),

a†(t) = a†(0)eiωt. (2.26)

1You might have the same questions that I had as a student. What are the origins of using a
harmonic model to quantize fields? Why is it valid? Why are E and B the canonical variables? I
should say that, at least in my opinion, we can not derive physics from the first place. Typically,
theorists would make educational guesses about the formulations. Such guesses are then to be
examined by experiments. The validities rely on whether the results can explain the observations.
To date, it is still the most consistent theory.
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Derivation 1: Bonus Credits!

It requires some effort to derive Eq. (2.22). We sketch the steps

(a) Plug Eqs. (2.19) and (2.20) in Eq. (2.13).

(b) Show that the integral of the magnetic term is equivalent to the electric
term. Replace the magnetic term with Eq. (2.12). Calculate the integrals
with two curls by the integration by parts. Use the identity of vector
calculus∫

V
dvF · (∇×A) =

∫
V
dvA · (∇×F) +

∫
S
(A×F) · da, (2.27)

where A and F are arbitrary vector fields. Use Eq. (2.11) to get rid of the
curls.

(c) Use the normalization condition Eq. (2.21).

Note 4: Quantization for Fields

The procedures to quantize a field are:

(a) Find the two canonical variables where the total energy is quadratic in
both variables. For example, let the two canonical variables be q and p.

(b) Impose the canonical commutation relation [q,p] = i~.

(c) Define the creation and annihilation operators in terms of q and p such
that [a,a†] = 1.

(d) Write the Hamiltonian in terms of a and a†.

Exercise 1: Quantization for LC circuit

Show that the total energy of an LC circuit is

E =
φ2

2L
+
Q2

2C
, (2.28)

where φ is the magnetic flux. The frequency ω of the LC oscillation is ω =√
1/LC, and

E =
φ2

2L
+
Lω2Q2

2
. (2.29)

In this form, we have L ∼m, φ ∼ p, and Q ∼ x. Thus, we enforce the relation

[Q̂, φ̂] = i~. (2.30)

Check the units in the above equation are consistent. Find the a and a† in
terms of φ, Q, L, ω.
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Example 1: Quantization for a Transmon Qubit

The transmon qubit, a cornerstone of modern superconducting quantum com-
puting, enhances the original charge qubit design. Comprising a Josephson
junction shunted by a large capacitance, it operates in a regime where the
Josephson energy (EJ ) greatly exceeds the charging energy (EC = e2/2C), typ-
ically with EJ /EC ∼ 20 − 100. This reduces sensitivity to charge noise, a key
limitation of earlier qubits, while maintaining sufficient anharmonicity for gate

operations. With a Hamiltonian approximated as H = Q2

2C − EJ cos(
2πφ
Φ0

), the
transmon behaves as a weakly anharmonic oscillator, offering coherence times
in the tens of microseconds. Widely adopted by IBM and Google, it’s ideal for
scalable quantum processors
Consider a transmon qubit consisting of a Josephson junction with energy EJ
and a large shunt capacitance C. The total energy of the system is given by

E =
Q2

2C
−EJ cos

(
2πφ
Φ0

)
, (2.31)

where Q is the charge on the capacitor, φ is the flux across the junction, and
Φ0 =

h
2e is the superconducting flux quantum.

For a transmon, EJ � EC , where EC = e2
2C is the charging energy. Near the

minimum of the potential, the energy can be approximated as a harmonic
oscillator with frequency ω =

√
8EJEC/~, and the Hamiltonian becomes

E ≈ Q
2

2C
+
φ2

2Leff
, (2.32)

where Leff =
Φ2
0

4π2EJ
is an effective inductance. Here, Q ∼ x (position-like) and

φ ∼ p (momentum-like), leading to the commutation relation

[Q̂, φ̂] = i~. (2.33)

1. Check that the units in the commutation relation [Q̂, φ̂] = i~ are con-
sistent, given Q is charge and φ is flux.

2. Find the annihilation operator a and creation operator a† in terms of Q,
φ, C, and ω.

2.2 Multimode

We have shown how to quantize a single mode of light. We can extend the formu-
lation to multimodes. Let m denote the quantum number of a mode. The total
Hamiltonian is

H =
∑
m

~ωm
(
a†mam +

1
2

)
. (2.34)

For example, m can denote the discrete quantum number of a waveguide or the
continuous quantum number k of a plane wave. If m are discrete numbers, we have
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the relations

[am, a
†
m′ ] = δmm′ . (2.35)

The total field is

E(r) =
∑
m

Em(r). (2.36)

The field operators of the mode m are

Em(r) =

[
Em(r)a+E∗m(r)a†

]
2

, (2.37)

Bm(r) =
i
[
−Bm(r)a+B∗m(r)a†

]
2

(2.38)

with the normalization conditions∫
dvε|Em(r)|2 = ~ωm. (2.39)

The magnetic field operator is given by

Bm(r) =
∇×Em(r)
iωm

. (2.40)

Example 2: Casimir Force in a Nutshell!

The Casimir force, also known as the Casimir effect, is a physical force that
arises from the quantum fluctuations of a field. This force was predicted by
Dutch physicist Hendrik Casimir for electromagnetic systems in 1948. In clas-
sical theories, the ground state of a vacuum has zero electric field. However,
in a quantum vacuum, the ground state energy is not zero since each allowed
mode contributes 1/2~ω. Thus, nonzero electric fields exist and produce
pressure. That is, the vacuum is not empty!
The vacuum energy of the total Hamiltonian is〈

0

∣∣∣∣∣∣∣∑k ~ωk

(
a†kak +

1
2

)∣∣∣∣∣∣∣0
〉
=

∑
k

~ωk

2
. (2.41)

The integral depends on how many modes there are. The most famous ex-
ample is the Casimir effect. Consider two parallel metal plates.
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The modes in the middle have the wave vector

k =
(Nπ
d
,ky , kz

)
. (2.42)

Therefore, the vacuum energy of the middle space is

E0(d) =
~
2
× 2×

(∫
Lydky
2π

∫
Lzdkz
2π

)∑
N

c

√
k2y + k2z +

N 2π2

d2
. (2.43)

This integral is divergent for any separation d. The potential energy of the
system U (d) is defined by

U (d) = E0(∞)−E0(d). (2.44)

Although both the two terms are divergent, their difference can be evaluated
(See Ref. [1] or Sec. 2.6 of Ref. [2]) as

U (d) =
−π2~cLyLz

720d3
. (2.45)

The force per unit area is then

Fc
LyLz

=
1

LyLz

−∂U
∂d

= − π
2~c

240d4
. (2.46)

2.3 Number States (Fock States)

The eigenstates of the photon Hamiltonian, Eq. (2.34) are the direct product of the
number states |n1〉 ⊗ |n2〉.... which is denoted as |n1n2...〉. The total energy of the
number states |n1n2...〉 is

〈...n2n1|H|n1n2...〉 =
∑
m

〈
...n2n1

∣∣∣∣∣~ωm (
a†mam +

1
2

)∣∣∣∣∣n1n2...〉 (2.47)

=
∑
m

(
nm +

1
2

)
~ωm. (2.48)

For simplicity, we consider a single-mode system in the following. Since the number
states are the eigenstates. The expectation values of the observables are static. The
expectation values of E(t) is

〈E(t)〉 =
〈
n

∣∣∣∣∣∣∣
[
Eω(r)a+E∗ω(r)a†

]
2

∣∣∣∣∣∣∣n
〉
= 0. (2.49)
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The standard deviation of E(t) of a number state |n〉 does not vanish

σ (E(t)) =
√〈

E(t)2
〉
− 〈E(t)〉2 (2.50)

=
√〈

E(t)2
〉

(2.51)

= |Eω(r)|

√
n+ 1

2

2
(2.52)

Exercise 2: Standard Deviation

Show Eq. (2.52). Hint: the operator E(t)2 is

E(t)2 =


[
Eω(r)a+E∗ω(r)a†

]
2


2

(2.53)

=
|Eω(r)|2(aa† + a†a) +

[
Eω(r) ·Eω(r)a2 +E∗ω(r) ·E∗ω(r)(a†)2

]
4

. (2.54)

The expectation of E(t)2 of a number state is〈
n
∣∣∣E(t)2∣∣∣n〉 . (2.55)

2.4 Plane Waves

The eigenmodes in vacuum are the plane waves with the quantum number k and s
(polarizations). The eigenmode Em(r) is

Em(r) = Ek,s(r) (2.56)

=
1
√
V
Ek,se

ik·r (2.57)

=

√
~ω
ε0V

ek,se
ik·r, (2.58)

where V is the volume where the waves exist. ek,s denotes the two possible polar-
izations. The total Hamiltonian reads

H =
∑
k,s

~ωk

(
a†k,sak,s +

1
2

)
. (2.59)



11 3 Thermal Ensemble

The electric and magnetic field operators are

Ek,s(r) =

[
Ek,sa+E∗k,s(r)a

†
]

2

=

√
~ωk

ε0V

[
ek,seik·ra+ e∗k,se

−ik·ra†
]

2
, (2.60)

Bk,s(r) =
k̂
c
×Ek,s

=

√
~ωk

ε0V

[
k̂ × ek,seik·ra+ k̂ × e∗k,se

−ik·ra†
]

2c
. (2.61)

3 Thermal Ensemble

An ensemble of photons is specified by the density matrices. The most classic
example is a system in the thermal equilibrium. The equilibrium is reached when
a photonic system is in contact with a heat reservoir (environment). For a given
temperature T , according to statistical mechanics, the probability of occupying a
state n is proportional to

p(n) ∼ e−
En
kBT , (3.1)

where kB is the Boltzmann’s constant. Considering the normalization, the probability
is

p(n) =
e
− En
kBT∑

m

e
− EmkBT

(3.2)

=
e
− En
kBT

Z
, (3.3)

with the partition function Z

Z =
∑
m

e
− EmkBT . (3.4)

Thus, the density operator of a thermal ensemble is

ρth =
∑
n

p(n)|n〉〈n| (3.5)

=
∑
n e
− En
kBT |n〉〈n|
Z

(3.6)

=
e
− HkBT

Tr[e−
H
kBT ]

(3.7)
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Exercise 3: Partition Function

Show that the partition function Z of a single-mode photonic system is

Z =
exp

(
− ~ω
2kBT

)
1− exp

(
− ~ω
kBT

) . (3.8)

Use Em =
(
m+ 1

2

)
~ω in Eq. (3.4)

The average number of the thermal ensemble is

〈N̂ 〉 = Tr[ρthN̂ ] (3.9)

=
∑
m

〈m|ρthN̂ |m〉 (3.10)

=
∑
m

m〈m|ρth|m〉 (3.11)

=
∑
m,n

me
−~ω(n+1/2)

kBT

Z
〈m|n〉〈n|m〉 (3.12)

=
∑
m

me
−~ω(m+1/2)

kBT

Z
See Derivation 2 (3.13)

=
1

exp ~ω
kBT
− 1

, (3.14)

which is the Bose-Einstein distribution.

Derivation 2: Trick of Sums of Series

Let

Z̃(x) =
∞∑
m=0

e−mx =
1

1− e−x
. (3.15)

The trick to calculate the following sums

Z̃l(x) ≡
∞∑
m=0

mle−mx, (3.16)

where l is an integer, is from the relation

Z̃l(x) = (−1)l ∂
lZ̃

∂xl
. (3.17)

Substituting Eq. (3.15) into (3.17) and doing the differentiation, you can obtain
a closed form of the sum, Eq. (3.16).
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Exercise 4: Standard Derivation of N̂

Calculate σ
(
N̂

)
of a thermal ensemble of temperature T . Use

σ
(
N̂

)
=

√
〈N̂ 2〉 − 〈N̂ 〉2, (3.18)

〈N̂ 〉 = Tr[ρthN̂ ], (3.19)

〈N̂ 2〉 = Tr[ρthN̂
2]. (3.20)

3.1 Black-Body Radiation

The average energy of one single mode is 〈N̂ 〉~ω. The black-body radiation is
defined as the radiation of a large enough thermally equilibrium system. Such a
system has the properties

• The system is large enough so that the modes inside are the plane waves
E = E0e

ik·r.

• The system is thermal equilibrium with a well-defined temperature T .

Each k corresponds to two modes (left/right circular polarizations) for such a system.
The total number of modes M (not photon number) is

M = 2
∑
k

. (3.21)

But, the k becomes a continuous number when the system is vast. In the continuous
limit, it becomes (see Derivation 3)

M =
1
π2

∫ ∞
0
k2dk. (3.22)

This gives an infinitely large number since k has no upper bound. We can change
the variable of the integral from k to ω by ω = ck

M =
∫ ∞
0

ω2

π2c3
dω. (3.23)

The M itself is not too meaningful. The number of modes within ω and ω + dω is
more meaningful. This is called the density of state g(ω), given by

g(ω) =
ω2

π2c3
. (3.24)

With this definition, the total number M

M =
∫ ∞
0
g(ω)dω. (3.25)
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Figure 1: Energy density of a thermal ensemble of photons from Sun and the black-
body radiation. (Picture credit: Wikimedia)

The density of state g(ω) is the number of modes per unit volume within ω and
ω+ dω. The average energy density U (ω) (energy per unit volume) is then

U (ω) = 〈N̂ 〉g(ω)~ω (3.26)

=
~ω3

π2c3
1

exp ~ω
kBT
− 1

. (3.27)

Its classical analog is the Rayleigh-Jeans formula

Uclassical(ω) = g(ω)kBT =
ω2

π2c3
kBT , (3.28)

This leads to classical physics’s ultraviolet catastrophe, i.e., the energy density di-
verges as ω→∞. The total energy density Utot is

Utot =
∫
dωU (ω) =

π2k4BT
4

15c3~3
. (3.29)

The famous Stefan-Boltzmann law states that the power radiated by a heated object
is proportional to T 4.

Derivation 3: Density of States

A cuboid has the side lengths Lx, Ly and Lz. We assume that the cuboid is
large enough so that a plane wave E0e

ik·r can propagate in any direction. The
system should satisfy the periodic boundary conditions so that the allowed
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wave vector k = (kx, ky , kz) is

kx =
2πlx
Lx

(3.30)

ky =
2πly
Ly

(3.31)

kz =
2πlz
Lz

(3.32)

where lx, ly and lz are integers. Note that lx, ly and lz can be negative. The
change of the total number m of modes is

∆m = 2∆lx∆ly∆lz = 2
(
LxLyLz
(2π)3

)
∆kx∆ky∆kz, (3.33)

∆kx ≡
2π
Lx
, (3.34)

∆ky ≡
2π
Ly
, (3.35)

∆kz ≡
2π
Lz
. (3.36)

where the factor 2 accounts for the polarizations. In the continuum limit, it
becomes

dm
V

=
( 1
4π3

)
dkxdkydkz (3.37)

=
1

4π34πk
2dk (3.38)

=
1
π2
ω2dω

c3
, (3.39)

⇒ g(ω) ≡ 1
V
dm
dω

=
ω2

π2c3
. (3.40)

Since lx, ly and lz can be negative, it means that kx, ky and kz can be negative.

Hence the integral
∫∞
−∞

∫∞
−∞

∫∞
−∞dkxdkydkz can be converted to

∫∞
0

4πk2dk.

Note 5: Paradox: Density of States

As a smart student, you may wonder why we use the periodic boundary con-
ditions and what if we use the vanishing boundary conditions so that instead
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of 2π, then the allowed wave vector k = (kx, ky , kz) becomes

kx =
πlx
Lx
, (3.41)

ky =
πly
Ly
, (3.42)

kz =
πlz
Lz
. (3.43)

Would this difference lead to a different density of states g(ω)? The answer
is no. Of course, the density of states g(ω) should be the same no matter
how one calculates it since there is only one physical truth. The resolution to
this paradox is that for the vanishing boundary conditions, the modes are not
plane waves but standing waves

E ∼ sin(kxLx)sin(kyLy)sin(kzLz). (3.44)

Since the modes do not propagate, the wave numbers are positive kx > 0,
ky > 0, and kz > 0 ( lx > 0, ly > 0 and lz > 0). Hence, the integrals over kx, ky ,
and kz start from 0 to∞. The integral

∫∞
0

∫∞
0

∫∞
0
dkxdkydkz is now converted

to 1
8

∫∞
0

4πk2dk. The 1
8 accounts for that only the shell in the first octant

is counted. So overall, you will obtain the same g(ω). Actually, the g(ω)
should be the same regardless of the boundaries if the system is large
enough.

4 Quadrature Operators

We have applied the idea of a harmonic oscillator to quantize fields. The canonical
variables of a particle, x and p are numbers. Unlike a particle, the canonical opera-
tors of a photon, E(r) and B(r) are vector functions. In other words, to completely
determine E(r), we have to know its value at every position r. In contrast, x does
not depend on other coordinates. Their similarities are the creation and annihila-
tion operators a and a†. It is then useful to define the dimensionless operators for
photons. We introduce the quadrature operators,

X =
a+ a†

2
, (4.1)

Y =
a− a†

2i
. (4.2)

The operator, X, is the dimensionless position operator, and the operator, Y , is the
dimensionless momentum. They have the relation

[X,Y ] =
i
2
. (4.3)

Using the generalized uncertainty relation, we obtain

σ (X)σ (Y ) ≥ |〈[X,Y ]〉|
2

=
1
4
. (4.4)
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The electric field operator of a mode m is rewritten as

Em(r) = Re[Em(r)]X − Im[Em(r)]Y . (4.5)

In the case of plane waves, the electric field operator of a mode {k, s} is

Ek,s(r) =

√
~ωk

ε0V

{
Re[ek,s]cos(k · r)X − Im[e∗k,s]sin(k · r)Y

}
. (4.6)

5 Research Topics

The current note has a pedagogic order with fundamental assumptions, main equa-
tions, derivation, and some consequences. Such a structure is suitable for having a
detailed understanding but may not be efficient for catching research topics. It is too
late to access research topics after learning you have learned everything or the entire
course. Many students think they must be well-prepared before reading a research
paper. The reality is that it takes forever to be well-prepared. Even worse is that
what you learned is outdated (of course, I will try to avoid this) or not applicable to
current trends or your interests. The better strategy is (i) developing core concepts
after one stage of learning and (ii) using these concepts to read papers. You may
encounter many troubles from reading papers, but then know more about what you
need.

For this reason, I summarize the main concepts in this note and list some current
research keywords related to these concepts.

Concepts:

• Electromagnetic waves are quantum harmonic oscillators. Indeed, every wave
in classical theories can be quantized. EM waves → photons, acoustic wave
→ phonons, ...

• Each mode is a harmonic oscillator.

• Zero-point energy gives quantum fluctuation.

• Numbers states can express any photon state.

• Temperature can determine the numbers in each mode.

• Quadrature operators are real and imaginary amplitudes of a mode. a and a†

are complex amplitudes.

Research keywords:

• single photon state: how to generate? In which physical systems? Applications?
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• NOON state: an entangled state of two modes. Quantum lithography, quan-
tum metrology.

• GHZ (Greenberger–Horne–Zeilinger state) state: an entangled state of three
modes.

• super-Planckian emission: emission from a heated quantum system

• thermal emitter, superradiance

• active radiative cooling and heating

• photonic heat engine

• quantum thermal light

• LOQC (linear optical quantum computing),[3] PIC, silicon photonics

• FBQC (fusion-based quantum computation)

• How to make a qubit with photons? polarization, frequency bin, time bin,
dual-rail, orbital angular momentum

• coherent Ising machines

• quadrature operators, phase space, quantum communication

• quantum communication with continuous variables

Exercise 5: Find and read a research paper

Use the above keywords from one of the items to search a paper after 2000
(or the year you were born) and more than 50 citations with a search engine
like Google Scholar and Web of Science.

• Provide the reference (title, authors, journal, volume, page number).

• Read the paper with the method:
https://web.stanford.edu/class/cs114/reading-keshav.pdf

• Rewrite the abstract for this paper by yourself. Make it brief.

• Summarize the main results and conclusions by listing them.

• Your opinions, questions, and comments on this paper.

• Future perspective.
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