Non-Classical Light

吳致盛 Jhih-Sheng Wu

陽明交大光電 Department of Photonics NYCU

2025

Outline

Squeezed Light

- Dynamics
- Generation and Detection
- Application: Gravitation Wave

Motion in the quadrature plane Light of a single frequency ω ,

$$a(t) = a(0)e^{-i\omega t}$$
$$a^{\dagger}(t) = a^{\dagger}(0)e^{i\omega t}$$

The evolutions of the quadrature operators are

Motion in the quadrature plane Light of a single frequency ω ,

$$a(t) = a(0)e^{-i\omega t}$$
$$a^{\dagger}(t) = a^{\dagger}(0)e^{i\omega t}$$

The evolutions of the quadrature operators are

$$X(t) = X(0) \cos (\omega t + \phi)$$
$$Y(t) = Y(0) \sin (-\omega t + \phi)$$

Clockwise motion!

Motion in the quadrature plane Light of a single frequency ω ,

$$a(t) = a(0)e^{-i\omega t}$$
$$a^{\dagger}(t) = a^{\dagger}(0)e^{i\omega t}$$

The evolutions of the quadrature operators are

$$X(t) = X(0) \cos (\omega t + \phi)$$

$$Y(t) = Y(0) \sin (-\omega t + \phi)$$

Clockwise motion!

Skecth the dynamics of a vacuum state and a squeezed vacuum state

Skecth the dynamics of a vacuum state and a squeezed vacuum state

Recall

Generation of a coherent state

Displacement operators $D(\alpha) = e^{\alpha a^{\dagger} - \alpha^* a}$ and $|\alpha\rangle = D(\alpha)|0\rangle$. For an oscillating current source $\mathbf{J} = \mathbf{J}_0(\mathbf{r})e^{i\omega t}$, the interaction Hamiltonian becomes

$$\mathcal{H}_I = \left(V_I a + V_I^* a^\dagger \right),$$

where the interaction potenital is time-indepdenent and reads

$$V_I = i\omega \int dv \boldsymbol{\mathcal{E}}_{\omega}(\mathbf{r}) \cdot \mathbf{J}_0(\mathbf{r}).$$

The evolution of a state is given by

$$|\psi(t)\rangle_I = e^{\alpha^* a - \alpha a^\dagger} |0\rangle$$

Recall

Generation of a coherent state

Displacement operators $D(\alpha) = e^{\alpha a^{\dagger} - \alpha^* a}$ and $|\alpha\rangle = D(\alpha)|0\rangle$. For an oscillating current source $\mathbf{J} = \mathbf{J}_0(\mathbf{r})e^{i\omega t}$, the interaction Hamiltonian becomes

$$\mathcal{H}_I = \left(V_I a + V_I^* a^\dagger \right),$$

where the interaction potenital is time-indepdenent and reads

$$V_I = i\omega \int dv \boldsymbol{\mathcal{E}}_{\omega}(\mathbf{r}) \cdot \mathbf{J}_0(\mathbf{r}).$$

The evolution of a state is given by

$$|\psi(t)
angle_I = e^{lpha^* a - lpha a^\dagger}|0
angle \qquad lpha = rac{iV_I^*t}{\hbar}$$

Operator

A squeezed state is generated by a squeeze operator,

$$S(\xi) = \exp\left(rac{\xi^* a^2 - \xi(a^{\dagger})^2}{2}
ight).$$

Operator

A squeezed state is generated by a squeeze operator,

$$S(\xi) = \exp\left(\frac{\xi^* a^2 - \xi(a^{\dagger})^2}{2}\right).$$

Speculation

Because of a^2 and $(a^{\dagger})^2$, we need terms of \mathbf{E}^2 . Squeezing involves nonlinear process!

Operator

A squeezed state is generated by a squeeze operator,

$$S(\xi) = \exp\left(rac{\xi^* a^2 - \xi(a^{\dagger})^2}{2}
ight).$$

Speculation

Because of a^2 and $(a^{\dagger})^2$, we need terms of \mathbf{E}^2 . Squeezing involves nonlinear process!

Spontaneous parametric down-conversion

Nonlinear Optics

In a non-centrosymmetric crystal like $LiNbO_3$ or BBO, the optical polarization can have both the linear and quadratic terms,

$$P_i = \chi_{ij}^{(1)} E_j + \chi_{ijk}^{(2)} E_j E_k.$$

If both $E_j \sim e^{-i\omega t}$ and $E_k \sim e^{-i\omega t}$, the output P_i is $\sim e^{-i2\omega t}$

Nonlinear interaction

In materials with χ^2 , the ω mode and the 2ω mode can interact!

- second harmonics generation: two ω photons become one 2ω photon
- Parametric down conversion: one 2ω photon becomes two ω photons

Generation: Parametric Down-Conversion

$$\mathcal{H} = \hbar \omega a^{\dagger} a + \hbar \omega_p \omega a_p^{\dagger} a_p + i \hbar \beta \chi^{(2)} \left(a^2 a_p^{\dagger} - (a^{\dagger})^2 a_p \right)$$

 $\chi^{(2)}$: second order susceptibility

 β : parameter related to the modes (overlapping)

Generation: Parametric Down-Conversion

$$\mathcal{H} = \hbar \omega a^{\dagger} a + \hbar \omega_p \omega a_p^{\dagger} a_p + i\hbar \beta \chi^{(2)} \left(a^2 a_p^{\dagger} - (a^{\dagger})^2 a_p \right)$$

 $\chi^{(2)}$: second order susceptibility β : parameter related to the modes (overlapping) Assume the pumping is a coherent state $|\alpha\rangle$

$$\mathcal{H} = \hbar \omega a^{\dagger} a + i\hbar \beta \chi^{(2)} \left(\alpha^* a^2 - \alpha (a^{\dagger})^2 \right)$$

Generation: Parametric Down-Conversion

$$\mathcal{H} = \hbar \omega a^{\dagger} a + \hbar \omega_p \omega a_p^{\dagger} a_p + i\hbar \beta \chi^{(2)} \left(a^2 a_p^{\dagger} - (a^{\dagger})^2 a_p \right)$$

 $\chi^{(2)}$: second order susceptibility β : parameter related to the modes (overlapping) Assume the pumping is a coherent state $|\alpha\rangle$

$$\mathcal{H} = \hbar \omega a^{\dagger} a + i\hbar \beta \chi^{(2)} \left(\alpha^* a^2 - \alpha (a^{\dagger})^2 \right)$$

Evolution operator is a squeeze operator!

$$U(t) = \exp\left[\eta^* t a^2 - \eta t (a^{\dagger})^2\right] = S(\xi)$$

Generation: OPO and Experiment

Detection

balanced homodyne detector (BHD) Local oscillator (LO): coherent state $|\alpha\rangle$

$$I_1 - I_2 = 2|\alpha| \langle X(\theta) \rangle$$

See Sec. 7.3 of C. Gerry and P. Knight

Generation and Detection

Gravitational Wave Detection

- General relativity: mass m distorts space-time; length varies
- Collision of giant masses (black holes) generates gravitational waves

V. ALTOUNIAN/SCIENCE

Gravitational Wave Detection

Michaelson Interferometer

Long distance: bigger phase due to gravitational waves Large power: reducing phase uncertainty; but bigger radiation noise.

Noise Reduction with Squeezed Lights

