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1 Hamiltonian 2

Light-matter interactions occur when charged particles accelerate in a time-dependent
electric field. An accelerating charge particle generates light, and conversely, electric
fields cause forces on the charged particles. In most scenarios, the magnetic field
does not directly interact with matter since it is easier to have charges and electric
dipoles than magnetic dipoles.

Time-dependent charges can be described by a charge density ρ(r, t). Dipoles and
currents are used more often to describe light-matter interaction. Polarization P
(dipole) and currents density J have the relations

∇ · J+
∂ρ

∂t
= 0, (0.1)

J =
∂P
∂t
. (0.2)

1 Hamiltonian

1.1 Interaction Hamiltonian

According to classical mechanics, a charged particle has the Hamiltonian (SI units)

H =
(p− qA)2

2m
+ qΦ(r, t), (1.1)

where q is the charge of the particle, not the position. Φ(r, t) is the electric potential.
In the case of an electron, q = −e, we have

H =
(p+ eA)2

2m
− eΦ(r, t). (1.2)

We can decompose it into H0 and HI ,

H0 =
p2

2m
, (1.3)

HI =
e (p ·A+A ·p)

2m
+
e2A2

2m
− eΦ. (1.4)

Typically, the term e2A2

2m is dropped since the momentum of field eA is usually small
than the electron’s momentum p 1 Since the momentum p is a differential operator,
p ·A is not equal to A · p. The vector potential A and Coulomb’s potential Φ are
not unique. The Maxwell’s equations are invariant under the gauge transformations

A′ =A+∇λ(r, t), (1.5)

Φ′ =Φ − ∂λ(r, t)
∂t

. (1.6)

1Well, this is a sloppy argument. In electromagnetism, the source of the vector potential A is
current, so A is proportional to v

c , where v is the electron speed and c is the light speed. The term
e2A2

2m is proportional to v2

c2
, which is typically small. .
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The fields are given by

B = ∇×A, (1.7)

E = −∇Φ − ∂A
∂t
. (1.8)

To simplify the Hamiltonian, the Coulomb gauge (∇ ·A) with the condition Φ = 02

is used most of the time. In the the Coulomb gauge, using p = −iℏ∇, we have

p ·A = p ·A

The interaction Hamiltonian becomes

HI =
e (A ·p)
m

(1.9)

= −
∫
dvA · J (1.10)

where we use
∫
dvJ = −epm .

The interaction Hamiltonian is now related to current and vector potential. It is
possible to replace current and vector potential by dipoles and electric field. We use
the Göppert-Mayer gauge,

λ = −(r− r0) ·A(r0). (1.11)

Using this gauge and Eq. (1.6), we have

A′ =A(r)−A(r0), (1.12)

−eΦ′ = e(r− r0) ·E(r0) ≡ −d ·E, (1.13)

where d = −e(r − r0) is the dipole operator since r is the position operator. The
so-called dipole approximation is when A(r) is almost a constant, i.e., A(r) ≃A(r0).
In this approximation, the new vector potential A′(r0) vanishes. This approximation
is valid if the field changes gradually over the range of the charge distributions. For
example, the charge distribution of an atom is about 0.1 nm, and the electric field of
visible light is almost constant over the atom since the wavelengths range from 400
to 700 nm. The interaction Hamiltonian becomes

HI = −E ·d (1.14)

Although we did not define the field operator A, it can be obtained by the relation
of the electric filed operator and the vector potential operator

E = − ∂
∂t

A (1.15)

= iωA (1.16)

A =
(
Ea−E∗a†

2iω

)
. (1.17)

2In the region without charges ∇·E = 0, we can define E = −∇Φ. Using the gauge transformation
λ =

∫
Φdt, we can eliminate Φ and make ∇ ·A = 0.
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1.2 Total Hamiltonian

The total Hamiltonian of the light-matter is

H =H0 +HI +HF . (1.18)

where

HF =
∑
m

∫
dv

(
ϵ(r)E2

m(r)
2

+
B2m(r)
2µ(r)

)
(1.19)

=
∑
m

ℏωm
(
a†mam +

1
2

)
. (1.20)

The Hamiltonian of matter H0 is not necessary in the form of a free particle. In
general, H0 describes a N -level system,

H0 =
∑
n

En|En⟩⟨En|. (1.21)

The simplest case is a two-level system (TLS)

HT LS =
(
Ec 0
0 Ev

)
. (1.22)

The interaction Hamiltonian for a two-level system is

HI =
(
⟨Ec | −E ·d|Ec⟩ ⟨Ec | −E ·d|Ev⟩
⟨Ev | −E ·d|Ec⟩ ⟨Ev | −E ·d|Ev⟩

)
(1.23)

= −E ·
(
dcc dcv
dvc dvv

)
, (1.24)

where the dipole matrix element is dnn′ = ⟨En|d|En′⟩. In many cases, the diagonal
elements of dipole matrices vanishes since the charge densities of the eigenfunctions
are typically symmetric.

2 Classical Fields and Quantum Matter

We consider that the matter is described by a N -level system and treat the electric
field E(r, t) as a number. The Hamiltonian is

H =
∑
n

En|En⟩⟨En| −E ·d. (2.1)

In the case of a TLS system, the Hamiltonian is

H =
(
Ec 0
0 Ev

)
−E ·

(
0 dcv
dvc 0

)
, (2.2)

where we assume the diagonal elements of the dipole matrix are zeros. To solve the
dynamics, we start with the interaction picture where the state is

|ψ⟩ = Cc(t)e−iωct |Ec⟩+Cv(t)e−iωv t |Ev⟩. (2.3)
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It is clear that without an external field E, the coefficients Cc(t) and Cv(t) are
constant in time. Plugging Eq. (2.3) in the Schrödinger equation, we obtain

iℏ
∂
∂t

(
Cc
Cv

)
= −E ·

(
0 dcvei(ωc−ωv )t

dvcei(ωv−ωc)t 0

)(
Cc
Cv

)
. (2.4)

The dipole matrix elements in the interaction picture oscillate rapidly in time. The
electric field E = Eωe−iωt +E∗ωeiωt needs to have a frequency ω ≃ (ωc−ωv) in order
to create transition. We write

ω = ωcv +∆, (2.5)

where ωcv = ωc −ωv and ∆ is the detuning.

2.1 Rabi Model

Let the external field E = E0 cosωt = E0

(
e−iωt+eiωt

2

)
. The equation of the coefficients

is

iℏ
∂
∂t

(
Cc
Cv

)
=

 0 V0
2

[
e−i∆t + ei(2ωcv+∆)t

]
V ∗0
2

[
ei∆t + e−i(2ωcv+∆)t

]
0

(CcCv
)
. (2.6)

where

V0 = −E0 ·dcv . (2.7)

The equation needs to be solved numerically. The rotating-wave approximation
(RWA), where the high-frequency terms are dropped, is often used. Under the RWA,
the equation reads

iℏ
∂
∂t

(
Cc
Cv

)
=

(
0 V0

2 e
−i∆t

V ∗0
2 e

i∆t 0

)(
Cc
Cv

)
. (2.8)

Eliminating the variable Cv , we obtain the second-order differential equation

C̈c + i∆Ċc +
|V0|2

4ℏ2
Cc = 0. (2.9)

The general solution is

Cc(t) = A+e
iλ+t +A−e

iλ−t (2.10)

with

λ± = ∆±
√
∆2 +

|V0|2
ℏ2
≡ ∆±ΩR. (2.11)

The Rabi frequency ΩR =
√
∆2 + |V0|

2

ℏ2 . If initially Cv(0) = 1 and Cc(0) = 1, the
solution is

Cc = e
i ∆t2

iV0

ℏΩR
sin

ΩRt
2
, (2.12)

Cv = e
i ∆t2

[
cos

ΩRt
2
− i ∆

ΩR
sin

ΩRt
2

]
. (2.13)



2 Classical Fields and Quantum Matter 6

It can be checked that |Cc |2 + |Cv |2 = 1. The population of the excited state is

Pc(t) = |Cc(t)|2 =
|V0|2 sin2

ΩRt
2

ℏ2Ω2
R

(2.14)

Figure 1: Population of the excited state as a function of time with V0
ℏ = 1.

2.2 Fermi’s Golden Rule

If the external field is small, we can obtain from Eq. (2.12) 3

Pc(t) = |Cc |2 =
|V0|2 sin2 ∆t

2

ℏ2∆2 . (2.15)

3the formal method to obtain this result is the the perturbation method (for example, see Chapter
5 of Ref. [1])
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Figure 2: The transition probability Pc(t) at a momentum t. When t is large, the
function is approximately a delta function.

When t is large, the fraction is approximately a delta function

sin2 ∆t
2

∆2 ≃ πt
2
δ(∆). (2.16)

The transition rate Wv→c is

Wv→c =
Pc(t)
t

=
π
2
|V0|2

ℏ2
δ(ω −ωcv) (2.17)

=
π
2
|E0 ·dcv |2

ℏ2
δ(ω −ωcv) (2.18)

=
π
2
| ⟨c|HI |v⟩ |2

ℏ2
δ(ω −ωcv), (2.19)

which is the famous Fermi’s Golden rule. The unit of δ(ω −ωcv) is one over fre-
quency. The delta function δ(ω −ωcv) is interpreted as the density of states. Since
we consider only a two-level system, there is only one final state for ωcv − dω/2 <
ω < ωcv + dω/2. If instead, we consider there are many states between ωcv − dω/2
and ωcv + dω/2, we will use the the density of states ρ(ω), defined by

ρ(ω) =
dN
dω

, (2.20)

where N is the number of states between ωcv − dω/2 and ωcv + dω/2. In this case,
Fermi’s Golden rule becomes

W =
π
2
| ⟨c|HI |v⟩ |2

ℏ2
ρ(ω), (2.21)

or, in terms of energies,

W =
π
2
| ⟨c|HI |v⟩ |2

ℏ
ρ(E), (2.22)

where ρ(E)dE is the number of states for E between Ecv − dE/2 and Ecv + dE/2.



3 Classical Matter and Quantum Fields 8

Using the Fermi Golden rule, one can derive the famous rate of spontaneous emis-
sion in a vacuum,

Wsp =
ω3|dcv |2

3πϵ0ℏc3
. (2.23)

Note 1: Fermi’s Golden Rule

• Fermi’s golden rules are valid in the perturbation regime (| ⟨c|HI |v⟩ | is
small compared to Ecv )

• Fermi’s golden rules describe the incoherent excitation. The excitation
events are independent, and the final state is almost empty. These
conditions are not true for the Rabi oscillation (coherent excitation).

• The rate is proportional to the square of the transition dipole element
| ⟨c|d|v⟩ |2

• The rate is proportional to the density of the final states.

2.3 Density Matrix Approach

Consider a classical light interacted with an ensemble of the same two-level systems.
We need to use the density matrix

ρ =
(
ρ11 ρ12
ρ21 ρ22

)
(2.24)

and use the quantum Liouville’s equation to obtain

dρ11
dt

= iΩR(ρ12 − ρ21), (2.25)

dρ22
dt

= −iΩR(ρ12 − ρ21), (2.26)

dρ12
dt

= iΩR(ρ11 − ρ22), (2.27)

dρ21
dt

= −iΩR(ρ11 − ρ22), (2.28)

where ρ11 and ρ22 describe probabilities, and ρ12 and ρ21 describe coherence.
Further simplifications give

d2ρ11
dt2

= −2Ω2
R(ρ11 − ρ22) (2.29)

= −2Ω2
R(2ρ11 − 1). (2.30)

3 Classical Matter and Quantum Fields

Currents and charges are treated as classical numbers. Time-dependent charges and
currents are not independent variables. They are related by the continuity equation.
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This assumption is adequate when currents come from a lot of electrons and the
quantum fluctuations are ignored. The typical problem is how a current source
I(r, t) interacts with photons. The current is a control and macroscopic parameter
which can be treated classically as a number. Thus, currents are given functions,
and the problem is to solve the filed Hamiltonian.

H =HF +HI (3.1)

=
∑
m

ℏωma†mam −
∑
m

Em ·d (3.2)

=
∑
m

ℏωma†mam −
∑
m

(
Ema+E∗ma†

2

)
·d, (3.3)

The above interaction Hamiltonian has the dipole instead of a current. Dynamically,
dipoles and currents are related. Let the current be I(r, t) = I(r)0e−iωt . The current
is related to the current density J by

J(r, t) =
I(r, t)
da⊥

. (3.4)

From this relation, we can find the current density J(r, t) = J0(r)e−iωt . Now we can
use the interaction Hamiltonian in terms of J and A. Considering a single mode
and ωm = ω, the Hamiltonian becomes

H = ℏωa†a−
∫
dvA · J. (3.5)

3.1 Generation of Coherent States

We are going to show a coherent state |α⟩ can be generated by a harmonic oscillating
current density

J =
J0(r)e−iωt + J∗0(r)e

iωt

2
(3.6)

This current density oscillating with the frequency ω can excite photons of the same
frequency. The total Hamiltonian is

H =H0 +HI , (3.7)

with the photon Hamiltonian H0 = ℏωa†a and HI = −
∫
dvA · J. Using Eq. (1.17) and

the RWA, the interaction Hamiltonian becomes

HI =
(
V0a+V

∗
0a
†
)
, (3.8)

where

V0(t) =
eiωt

∫
dvE∗ω(r) · J0(r)
4iω

. (3.9)
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Now, the term V0(t) is time-dependent. We can use the interaction picture to re-
move the time dependence. In the interaction picture4, the interaction Hamiltonian
becomes5

H̃I =
(
VIa+V

∗
I a
†
)
, (3.10)

where the interaction potential becomes time-independent and reads

VI =

∫
dvE∗ω(r) · J0(r)

4iω
. (3.11)

The evolution of a state is given by

|ψ(t)⟩I = T̂ [e−i
∫ H̃I (t)

ℏ dt]|ψ(0)⟩I (3.12)

where T̂ [] denotes the time-ordering6. In this case, the interaction Hamiltonian in
the interaction picture is time-independent,

|ψ(t)⟩I = e−i
H̃I (t)
ℏ t |ψ(0)⟩I (3.13)

= eα
∗a−αa† |ψ(0)⟩I , (3.14)

where

α = i
V ∗I
ℏ
t. (3.15)

Equation (3.14) is indeed the displacement operator. If the initial state is the ground
state |0⟩, the final state is a coherent state,

|ψ(t)⟩I = eα
∗a−αa† |0⟩ (3.16)

= |α⟩. (3.17)

One interesting observation is that |α| ∼ t and the photon number n ∼ t2 grows
quadratically.

4 Fully Quantum Approach

When both electrons and fields are quantized, the Hamiltonian includes three parts:
photons, electrons, and interactions. The Hamiltonian is

H =HF +He +HI (4.1)

=
∑
m

ℏωma†mam +
∑
n

En|En⟩⟨En| −E ·d. (4.2)

4Rotating with the H0.
5To avoid confusion, we use H̃I to denote the interaction Hamiltonian in the interaction picture.
6Time-ordering is necessary if HI is time-dependent and [HI (t1),HI (t2)] , 0
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It should be noted that both the field E and the dipole d are operators. The electric
field operator is

E =
∑
m

Emam +E∗ma†m
2

, (4.3)

and the dipole matrix operator in the energy basis is
d11 d12 . . .
d21 d22
...

. . .

 , (4.4)

with dnn′ = ⟨En|d|En′⟩ and d = qr = −er.

The Hilbert space of the Hamiltonian includes both the photon and electron parts.
The total space is indeed the tensor direct product of each space,

|ψ⟩ = |photon⟩ ⊗ |electron⟩. (4.5)

The dimension of the total space is the product of the dimension of each space. In
this definition, the photonic operators such as a and a† will only be applied on the
photonic ket |photon⟩, and the electronic operators such as d will only be applied
on the electronic ket |electron⟩.

⟨ψ|HF |ψ⟩ = ⟨photon|HF |photon⟩ ⊗ ⟨electron|electron⟩ = ⟨photon|HF |photon⟩ ⊗1e,
(4.6)

⟨ψ|He |ψ⟩ = ⟨photon|photon⟩ ⊗ ⟨electron|H|electron⟩ = 1F ⊗ ⟨photon|He |photon⟩,
(4.7)

⟨ψ|E ·d|ψ⟩ = ⟨photon|E|photon⟩ · ⟨electron|d|electron⟩. (4.8)

For example, we can write the photonic ket in a number basis and the electron ket
in the energy basis,

|photon⟩ =
∑
n

Cn|n⟩, (4.9)

|electron⟩ =
∑
m

Dm|Em⟩. (4.10)

Now, all the possible states of the total space can be written as

|ψ⟩ =
∑
n

Cn|n⟩
⊗ ∑

m

Dm|Em⟩
 . (4.11)

In principle, the dimension of the total space is infinite since the dimension of
the number state is infinite. In practical computation, we will truncate the photon
number so that the maximum number is finite, say nm. The photon basis vectors
now include |0⟩, |1⟩,... , |nm⟩, so the dimension of the photonic part is m. If now we
consider a two-level system of electrons, the dimension of the total space is m × 2.
All the basis vectors of the total space are |0⟩|Ec⟩, |1⟩|Ec⟩,... , |nm⟩|Ec⟩, and |0⟩|Ev⟩,
|1⟩|Ev⟩,... , |nm⟩|Ev⟩.
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4.1 Two-Level System and Single-Mode Photons

The Hamiltonian is

H = ℏωa†a+
(
Ec 0
0 Ev

)
−E ·d. (4.12)

where the electric field operator is

E =
Eωa+E∗ωa†

2
, (4.13)

and the dipole matrix operator is (
0 dcv
dvc 0

)
, (4.14)

where we assume that the diagonal terms vanish. The transition rate from |n⟩|Ec⟩ to
|n+1⟩|Ev⟩ is obtained by

Wemission =
π
2
|⟨n+1|⟨Ev |HI |n⟩|Ec⟩|2

ℏ2
δ(ω −ωcv) (4.15)

=
(n+1)π

2
|Eω ·dcv |2

ℏ2
δ(ω −ωcv). (4.16)

An interesting result occurs when n = 0. The emission is not zero when n = 0. This
is the phenomenon of “spontaneous emission”. When n > 0, it corresponds to the
stimulated emission. The transition rate from |n⟩|Ev⟩ to |n− 1⟩|Ec⟩ is obtained by

Wabsorption =
π
2
|⟨n− 1|⟨Ec |HI |n⟩|Ev⟩|2

ℏ2
δ(ω −ωcv) (4.17)

=
nπ
2
|E∗ω ·dvc |2

ℏ2
δ(ω −ωcv). (4.18)

4.2 Jaynes-Cummings Model

The TLS and single-mode photon Hamiltonian can be further simplified with the
RWA,

The Hamiltonian is

H = ℏωa†a+
(
Ec 0
0 Ev

)
− 1
2

(
0 Eω ·dcva+E∗ω ·dcva†

Eω ·dvca+E∗ω ·dvca† 0

)
(4.19)

≃ ℏωa†a+
(
Ec 0
0 Ev

)
− 1
2

(
0 Eω ·dcva

E∗ω ·dvca 0

)
(4.20)

= ℏωa†a+
Ec +Ev

2
+
ℏωcv
2

σz + ℏ
(
λσ+a+λ

∗σ−a
†
)

(4.21)

where

λ =
−Eω ·dcv

2ℏ
. (4.22)
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The average energy Ec+Ev
2 is only a constant, so as irrelevant to dynamics. In most

cases, it is possible to make λ real by choosing the phase of dcv . The JaynesCum-
mings Model is then obtained as

HJC = ℏωa†a+
ℏωcv
2

σz + ℏλ
(
σ+a+σ−a

†
)
. (4.23)

We have used the Pauli matrices

σz = |Ec⟩⟨Ec | − |Ev⟩⟨Ev | =
(
1 0
0 −1

)
, (4.24)

σ+ = |Ec⟩⟨Ev | =
(
0 1
0 0

)
, (4.25)

σ− = |Ev⟩⟨Ec | =
(
0 0
1 0

)
. (4.26)

The electron number operator is an identity,

Ne = |Ec⟩⟨Ec |+ |Ev⟩⟨Ev |, (4.27)

and the excitation number operator is

Nex = |Ec⟩⟨Ec |+ a†a. (4.28)

These numbers are conservative since the commutators vanish

[H,Ne] = 0, (4.29)

[H,Nex] = 0. (4.30)

Exercise 1: Excitation Number

Show Eq. (4.38).

The Jaynes-Cummings Model is then obtained as

HJC = ℏωa†a+
ℏωcv
2

σz + ℏλ
(
σ+a+σ−a

†
)
. (4.31)

We have used the Pauli matrices

σz = |Ec⟩⟨Ec | − |Ev⟩⟨Ev | =
(
1 0
0 −1

)
, (4.32)

σ+ = |Ec⟩⟨Ev | =
(
0 1
0 0

)
, (4.33)

σ− = |Ev⟩⟨Ec | =
(
0 0
1 0

)
. (4.34)

The electron number operator is an identity,

Ne = |Ec⟩⟨Ec |+ |Ev⟩⟨Ev |, (4.35)

and the excitation number operator is

Nex = |Ec⟩⟨Ec |+ a†a. (4.36)
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These numbers are conservative since the commutators vanish

[H,Ne] = 0, (4.37)

[H,Nex] = 0, (4.38)

which mean that the total Hamiltonian can be block-diagonalized, and in each
block, the excitation number and the electron number are the same. The basis kets
are

|n⟩ ⊗ |Em⟩ ≡ |n⟩|Em⟩ (4.39)

where Em = Ec or Ev and n = 0, 1, ,2, 3, ... It seems that if we want to use the
number states as the basis, the dimension of the Hamiltonian would be infinite. This
is true, but the Hamiltonian can be block-diagonalized. Because the excitation
number is conserved, only the states with the same excitation number are
coupled. Within each block, the excitation number is the same. Eventually, one
finds that each block is just a 2 by 2 matrix. This is because the state |Ec⟩|n⟩ is
only coupled to |Ev⟩|n + 1⟩. The problem is then solved using a two-dimensional
Hamiltonian since each block is independent.

The Hamiltonian is decomposed as

HJC =HN +HD (4.40)

HN = ℏωNex − ℏ
ω
2
Ne, (4.41)

HD = −ℏ∆
2
σz + ℏλ

(
σ+a+σ−a

†
)
. (4.42)

with ω = ωcv +∆. The two Hamiltonians HN and HD commute with each other,

[HN ,HD] = 0, (4.43)

which means the two Hamiltonians are decoupled, so

e−i
HN+HD

ℏ t = e−i
HN
ℏ te−i

HD
ℏ t = e−i

HD
ℏ te−i

HN
ℏ t . (4.44)

In the basis by Eq. (4.39), the Hamiltonian HN is indeed diagonal, which means
that as time increases, HN only adds the phase in each basis vector but does not
cause the transitions between the basis kets. The physical reason is that the Hamil-
tonian HN describes the conservative numbers so that it is irrelevant to dynamics.
Therefore, the dynamics is given by HD . We can use the interaction picture where
H0 =HD so that the dynamics is given by

iℏ
∂
∂t
|ψ⟩I =HD |ψ⟩I . (4.45)

The ket here is in the interaction picture. Because of being block-diagonalized, the
dimension of |ψ⟩I is effectively 2.
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Example 1: Number State

Let the light in the number state |n⟩. The two basis kets are

|n+1⟩|Ev⟩ ≡ |i⟩, (4.46)

|n⟩|Ec⟩ ≡ |f ⟩. (4.47)

An arbitrary state in the interaction picture is

|ψ(t)⟩ = Ci(t)|i⟩+Cf (t)|f ⟩. (4.48)

Plugging this state in Eq. (4.45), we obtain

iℏ
∂
∂t

(
Cf
Ci

)
=

(
−ℏ∆2

√
n+1ℏλ√

n+1ℏλ ℏ∆
2

)(
Cf
Ci

)
. (4.49)

The eigenfrequencies are

ω± = ±

√
∆2

4
+ (n+1)λ2. (4.50)

and the eigenvectors (using the Bloch sphere representation) are

|ω+⟩ =
(
cos θ2
sin θ

2

)
e−iω+t (4.51)

|ω−⟩ =
(
sin θ

2
−cos θ2

)
e−iω−t (4.52)

with

θ = − tan−1
(
2
√
n+1λ
∆

)
. (4.53)

If the initial state is Ci = 1 and Cf = 0, the solution becomes

|ψ⟩ = sin
θ
2
|ω+⟩ − cos

θ
2
|ω−⟩, (4.54)

Ci(t) = cosω+t + i cosθ sinω+t, (4.55)

Cf (t) = −i sinθ sinω+t. (4.56)

The population of the excited state ne = |Cf (t)|2 is

ne = sin2θ sin2ω+t, (4.57)

= sin2θ sin2
√

∆2

4
+ (n+1)λ2t. (4.58)

This is the Rabi oscillation between the states |Ev⟩|n + 1⟩ and |Ec⟩|n⟩. Only
when the detuning is zero, we have sinθ = 1 and the maximum excitation.
The Rabi frequency is

ω+ =

√
∆2

4
+ (n+1)λ2. (4.59)
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The Rabi frequency depends on the number of photons. One novel case is
n = 0 where the frequency is not zero but

ω+(n = 0) =

√
∆2

4
+λ2. (4.60)

This means that there exists the Rabi oscillation even when there is no pho-
ton.a This is called the “vacuum Rabi oscillations”.
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Figure 3: Rabi oscillations of the JC models for n = 0 and n = 2. The other
parameters are ∆ = 0 and λ = 0.1

.
aThough, the vacuum energy is nonzero!

4.3 JC models with a Coherent State

Let us consider a more general situation where the photon state is

|field⟩ =
∞∑
n=0

Cn|n⟩, (4.61)

and the two level system is

|TLS⟩ = Cc |Ec⟩+Cv |Ev⟩. (4.62)

The total state is

|ψ⟩ = |field⟩ ⊗ |TLS⟩. (4.63)

The solution is then (when ∆ = 0)

|ψ⟩ =
∑
n

[CcCn cos(ωn+1t)− iCvCn+1 sin(ωn+1t)] |n⟩|Ec⟩ (4.64)

+
∑
n

[CvCn+1 cos(ωn+1t)− iCcCn sin(ωn+1t)] |n+1⟩|Ev⟩, (4.65)
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where

ωn = ω+(n). (4.66)

Let the initial state be Cc = 0 and Cv = 1. The population of the excited state is

ne = |Cc(t)|2 =
∑
n

|Cn+1|2 sin2ωn+1t (4.67)

=
∑
n

|Cn+1|2
(1− cos2ωn+1t

2

)
(4.68)

=
1
2
−
∑
n

|Cn+1|2
(cos2ωn+1t

2

)
. (4.69)

In terms of n, we obtain

ne =
1
2
−
∑
n

|Cn+1|2
(
cos2λ

√
n+1t

2

)
. (4.70)

Figure 4 shows the populations in the cases of coherent states. Even with a coherent
state, the population is not a simple harmonic oscillation as in the classical case.
There are two new properties. First, the oscillation lasts for a time τc (the duration
of the wave packet.) and collapses. It is shown that the time τc is in the limit
n→∞,

τc ≃
√
2
λ
. (4.71)

After a rephasing time τrp, the oscillation comes back. This is called the revival.
The time τrp is in the limit n→∞,

τrp ≃
4π|α|
λ

. (4.72)

Two properties of the JC model are

• Collapsing

• Revival
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Figure 4: Rabi oscillations of the JC models for a coherent state. Collapsing and
revival appear.

4.4 Dressed States

We focused on the dynamics of the JC model. Now, we discuss the eigenstates of the
JC model. First, the photon energy in the vacuum is E = nℏω.7 In a cavity, photons
are coupled with the TLS. As a result, the photon energies are shifted. We can
think that the combination of photons and the TLS leads to a new state called the
“dressed state”, or in the context of condensed matter physics, “polaritons”. The JC
Hamiltonian is block-diagonalized. Each block, denoted as H(n), is a 2 by 2 matrix,

H(n) = nℏω +
(
−ℏ∆2

√
n+1ℏλ√

n+1ℏλ ℏ∆
2

)
, (4.73)

where the matrix is spanned by the basis vectors from Eqs. (4.46) and (4.47). The
eigenvalues are

E1n = nℏω + ℏωn, (4.74)

E2n = nℏω − ℏωn, (4.75)

where ωn =
√

∆2

4 + (n+1)λ2 and the eigenvectors (using the Bloch sphere represen-
tation) are

|1n⟩ =
(
cos θ2
sin θ

2

)
e−iω+t (4.76)

|2n⟩ =
(
sin θ

2
−cos θ2

)
e−iω−t (4.77)

7We drop 1/2ℏω.
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with

θ = − tan−1
(
2
√
n+1λ
∆

)
. (4.78)

The dressed photons are the eigenstates of the total system. Compared to photons
in a vacuum, their frequencies shift and become non-degenerate. The splitting of
dressed states is the origin of the Mollow triplet emissions.

  

ω
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DressedBare
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Figure 5: Mollow triplet emissions.

Figure 6: Experimental observation of the Mollow triplet emissions. From Nature
Physics 5, 198202(2009)
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