Non-Classical Light

吳致盛 Jhih-Sheng Wu

陽明交大光電 Department of Photonics NYCU

2023

Outline

Squeezed Light

- Dynamics
- Generation and Detection
- Application: Gravitation Wave

Motion in the quadrature plane Light of a single frequency ω ,

$$a(t) = a(0)e^{-i\omega t}$$
$$a^{\dagger}(t) = a^{\dagger}(0)e^{i\omega t}$$

The evolutions of the quadrature operators are

Motion in the quadrature plane Light of a single frequency ω ,

$$a(t) = a(0)e^{-i\omega t}$$
$$a^{\dagger}(t) = a^{\dagger}(0)e^{i\omega t}$$

The evolutions of the quadrature operators are

$$X(t) = X(0)\cos(\omega t + \phi)$$

$$Y(t) = Y(0)\sin(-\omega t + \phi)$$

Clockwise motion!

Motion in the quadrature plane Light of a single frequency ω ,

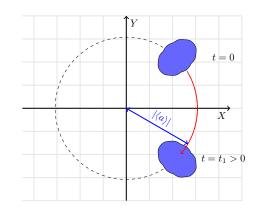
$$a(t) = a(0)e^{-i\omega t}$$

$$a^{\dagger}(t) = a^{\dagger}(0)e^{i\omega t}$$

The evolutions of the quadrature operators are

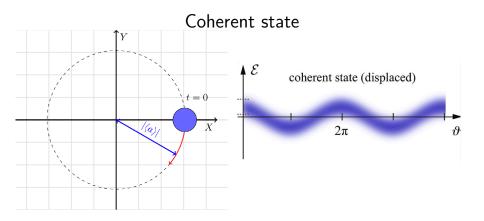
$$X(t) = X(0)\cos(\omega t + \phi)$$

$$Y(t) = Y(0)\sin(-\omega t + \phi)$$

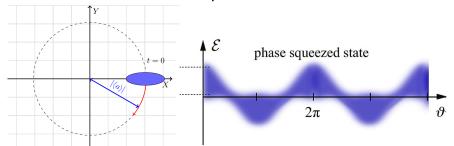


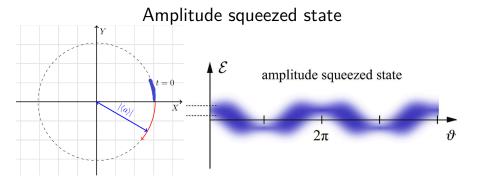
3 / 15

Clockwise motion!



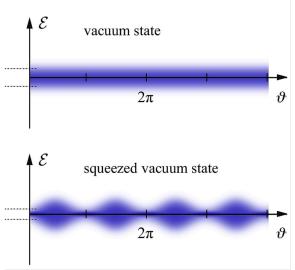
Phase squeezed state





Skecth the dynamics of a vacuum state and a squeezed vacuum state

Skecth the dynamics of a vacuum state and a squeezed vacuum state



Recall

Generation of a coherent state

Displacement operators $D(\alpha)=e^{\alpha a^{\dagger}-\alpha^* a}$ and $|\alpha\rangle=D(\alpha)|0\rangle$.

For an oscillating current source ${\bf J}={\bf J}_0({\bf r})e^{i\omega t}$, the interaction Hamiltonian becomes

$$\mathcal{H}_I = \left(V_I a + V_I^* a^\dagger \right),\,$$

where the interaction potenital is time-indepdenent and reads

$$V_I = i\omega \int dv \mathcal{E}_{\omega}(\mathbf{r}) \cdot \mathbf{J}_0(\mathbf{r}).$$

The evolution of a state is given by

$$|\psi(t)\rangle_I = e^{\alpha^* a - \alpha a^\dagger} |0\rangle$$

Recall

Generation of a coherent state

Displacement operators $D(\alpha)=e^{\alpha a^{\dagger}-\alpha^* a}$ and $|\alpha\rangle=D(\alpha)|0\rangle$.

For an oscillating current source ${\bf J}={\bf J}_0({\bf r})\,e^{i\omega t}$, the interaction Hamiltonian becomes

$$\mathcal{H}_I = \left(V_I a + V_I^* a^\dagger \right),\,$$

where the interaction potenital is time-indepdenent and reads

$$V_I = i\omega \int dv \mathcal{E}_{\omega}(\mathbf{r}) \cdot \mathbf{J}_0(\mathbf{r}).$$

The evolution of a state is given by

$$|\psi(t)\rangle_I = e^{\alpha^* a - \alpha a^{\dagger}} |0\rangle$$
 $\alpha = \frac{i V_I^* t}{\hbar}$

Operator

A squeezed state is generated by a squeeze operator,

$$S(\xi) = \exp\left(\frac{\xi^* a^2 - \xi(a^{\dagger})^2}{2}\right).$$

Operator

A squeezed state is generated by a squeeze operator,

$$S(\xi) = \exp\left(\frac{\xi^* a^2 - \xi(a^{\dagger})^2}{2}\right).$$

Speculation

Because of a^2 and $(a^{\dagger})^2$, we need terms of ${\bf E}^2$. Squeezing involves nonlinear process!

Operator

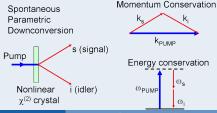
A squeezed state is generated by a squeeze operator,

$$S(\xi) = \exp\left(\frac{\xi^* a^2 - \xi(a^{\dagger})^2}{2}\right).$$

Speculation

Because of a^2 and $(a^{\dagger})^2$, we need terms of ${\bf E}^2$. Squeezing involves nonlinear process!

Spontaneous parametric down-conversion



Generation: Parametric Down-Conversion

$$\mathcal{H} = \hbar\omega a^{\dagger} a + \hbar\omega_p \omega a_p^{\dagger} a_p + i\hbar\beta \chi^{(2)} \left(a^2 a_p^{\dagger} - (a^{\dagger})^2 a_p \right)$$

 $\chi^{(2)}$: second order susceptibility

 β : parameter related to the modes

Generation: Parametric Down-Conversion

$$\mathcal{H} = \hbar\omega a^{\dagger} a + \hbar\omega_p \omega a_p^{\dagger} a_p + i\hbar\beta \chi^{(2)} \left(a^2 a_p^{\dagger} - (a^{\dagger})^2 a_p \right)$$

 $\chi^{(2)}$: second order susceptibility β : parameter related to the modes Assume the pumping is a coherent state $|\alpha\rangle$

$$\mathcal{H} = \hbar\omega a^{\dagger} a + i\hbar\beta \chi^{(2)} \left(\alpha^* a^2 - \alpha (a^{\dagger})^2 \right)$$

Generation: Parametric Down-Conversion

$$\mathcal{H} = \hbar\omega a^{\dagger} a + \hbar\omega_{p}\omega a_{p}^{\dagger} a_{p} + i\hbar\beta\chi^{(2)} \left(a^{2}a_{p}^{\dagger} - (a^{\dagger})^{2}a_{p}\right)$$

 $\chi^{(2)}$: second order susceptibility

 β : parameter related to the modes

Assume the pumping is a coherent state $|\alpha\rangle$

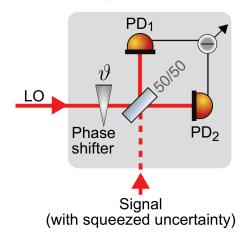
$$\mathcal{H} = \hbar\omega a^{\dagger} a + i\hbar\beta\chi^{(2)} \left(\alpha^* a^2 - \alpha(a^{\dagger})^2\right)$$

Evolution operator is a squeeze operator!

$$U(t) = \exp\left[\eta^* t a^2 - \eta t (a^{\dagger})^2\right] = S(\xi)$$

Detection

balanced homodyne detector (BHD) Local oscillator (LO): coherent state $|\alpha\rangle$

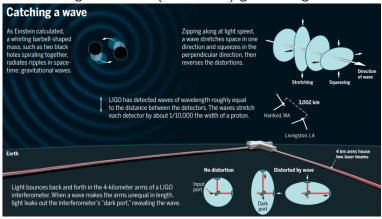


$$I_1 - I_2 = 2|\alpha|\langle X(\theta)\rangle$$

See Sec. 7.3 of C. Gerry and P. Knight

Gravitational Wave Detection

- General relativity: mass m distorts space-time; length varies
- Collision of giant masses (black holes) generates gravitational waves



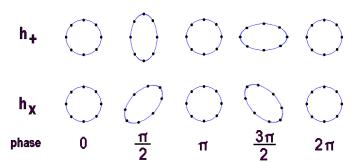
V. ALTOUNIAN/SCIENCE

Gravitational Wave Detection

Effects

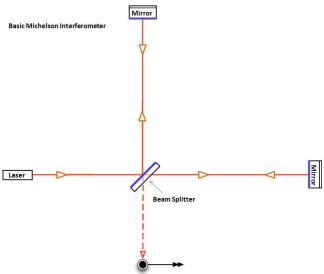
Require relative precision: 10^{-18}

Arm length = 4 km $\Rightarrow \Delta L = 4 \times 10^{-15} \mathrm{m} \sim \mathrm{proton\ size}$



Michaelson Interferometer

Long distance: bigger phase due to gravitational waves Large power: reducing phase uncertainty; but bigger radiation noise.



Noise Reduction with Squeezed Lights

