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1. Review of Quantum Mechanics

Quantum mechanics is a modern mathematical theory used to describe the quantum
phenomena. Although many scientists think it is not the ultimate theory, it is the most
accurate theory today that describes the experiments. Quantum mechanics is formulated
under the postulates, which are derived after many attempts to explain the experiments.
In classical mechanics, a physical system consists of physical quantities which have
definite values. For examples, the position x and the momentum p of a particle at any
given time t are assumed to be some numbers. On the contrary, a physical system in
quantum mechanics is described by a state |ψ〉. The notation |ψ〉 is called a ket. In a
closed system, the state |ψ〉 contains all the information of the systems. The exotic part
of quantum mechanics is that even |ψ〉 is complete, the outcome of observed quantities
are still probabilistic.

1.1 Wavefunction
Let’s use the wavefunction to elaborate the nature of probability. The wavefunction of a
particle is obtained by writing |ψ〉 in the x basis |x〉,

ψ(x) ≡ 〈x|ψ〉. (1.1.1)

For a given wavefunction ψ(x), the probability to find the particle to be at x is |ψ(x)|2dx.
Since the total probability is one, the normalization of a state requires that∫

|ψ(x)|2dx = 1. (1.1.2)

The average position 〈x〉 (expectation value) of the particle is

〈x〉 =
∫
x|ψ(x)|2dx. (1.1.3)

With the definitions, the well known Schrödinger’s equation reads

i~
∂
∂t
ψ = − ~2

2m
∂2

∂x2ψ +V (x)ψ. (1.1.4)
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The representation of a state |ψ〉 is not unique. For example, we can use the momentum
basis |p〉 to write |ψ〉,

φ(p) ≡ 〈p|ψ〉, (1.1.5)

and ∫
|φ(p)|2dp = 1. (1.1.6)

Eq. (1.1.4) is only one example of the Schrödinger’s equation. We will learn more
general approaches to write the equations of quantum mechanics. There, we will start
from the Hamiltonian of a system.

1.2 Dirac Notations
In quantum mechanics, the Bra-Ket notations are convenient tools. Any states are
written as Kets |ψ1〉, |ψ2〉, |ψ3〉,... You can think a Ket as a column vector. However, the
representation of a column vector depends on the bases. For example, in the position
basis, Kets can be defined as:

|ψ〉 =


ψ(x1)
ψ(x2)
...

ψ(xN )

 . (1.2.1)

whereas in the momentum basis

|ψ〉 =


φ(p1)
φ(p2)
...

φ(pN )

 (1.2.2)

The role of a Bra is similar to row vectors in linear algebra. In the position basis, Bra
can be defined as:

〈ψ| =
(
ψ∗(x1) ψ∗(x2) . . . ψ∗(xN )

)
. (1.2.3)

whereas in the momentum basis

〈ψ| =
(
φ∗(p1) φ∗(p2) . . . φ∗(pN )

)
. (1.2.4)

The inner product of two states |ψ〉 and |φ〉 is

〈ψ|φ〉, (1.2.5)

which is a complex number. The inner product 〈ψi |ψi〉 is the probability to find the
particle in the ith state. The outer product of two states |ψ〉 and |φ〉 is

|φ〉〈ψ| (1.2.6)

which is a matrix.
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Exercise 1.1 Calculation of bras and ketscbk Let

|a〉 =

 1
2i
3

 (1.2.7)

|b〉 =

i0
2

 (1.2.8)

What are 〈a| and 〈b|?
1.2. Calculate 〈a|a〉, 〈b|b〉, 〈a|b〉 and 〈b|a〉?
3. Calculate |a〉〈b| and |b〉〈a|. Are they complex conjugate of each other?

�

If |ψ〉 is to describe a single particle, the normalization of a state requires the inner
product

〈ψ|ψ〉 = 1 (1.2.9)

or in a specific basis∑
i

|ψi |2 = 1, (1.2.10)

and for a continuous variable like x,∫
dx|ψ(x)|2 = 1. (1.2.11)

In the position basis, the position is a operator x̂ (a matrix).

x̂ =


x1 0 0 0
0 x2 0 0
...

...
. . .

...
0 0 · · · xN

 (1.2.12)

As it should be, the operator x̂ is a diagonal matrix in the position basis. In the Dirac’s
notation, the expectation value of x is

〈x〉 = 〈ψ|x̂|ψ〉 (1.2.13)

=
∑
i

xi |ψi |2 (1.2.14)

=
∫
x|ψ(x)|2dx. (1.2.15)

1.3 Postulates of Quantum Mechanics
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Figure 1.1: Bloch sphere.

Postulate 1.1 — State Vector. A physical system is completely described by a
complex state vector |ψ〉 in the Hilbert space.

The state vector |ψ〉 contains all the information. The state vector can be written as
a sum of other (basis) vectors.

|ψ〉 =
∑
i

αi |ψi〉 (1.3.1)

The probability to find the system in the ith state is |αi |2. The simplest example is the
qubit,

|ψ〉 = α|0〉+ β|1〉. (1.3.2)

Without losing the generality, the qubit can be written as (|α|2 + |β|2 = 1)

|ψ〉 = eiφg
(
cos

θ
2
|0〉+ sin

θ
2
eiφr |1〉

)
, (1.3.3)

where φg is the global phase, and φr is the relative phase between the |0〉 and |1〉 states.
Without comparing with another qubit, the phase ψg does not have much meaning. The
degrees of freedoms of a qubit are given by θ and φr , which correspond to a surface of
a sphere. The space of a qubit is called the Bloch sphere.

Postulate 1.2 — Temporal Evolution. The evolution of a closed quantum state is
described by the unitary transformation.

The state |ψ(t′) is related to the state |ψ(t) by

|ψ(t′)〉 = Û (t, t′)|ψ(t)〉, (1.3.4)
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where U (t, t′) is a unitary operator (a matrix), U†U = 1. 1

The postulate comes from the conservation of total probabilities,

〈ψ(t′)|ψ(t′)〉 = 〈ψ(t)|ψ(t)〉 = 1 (1.3.5)

The unitary operator can be written as

U (t, t′) = e−i
H
~ (t′−t), (1.3.6)

where H has to be hermitian, H =H†, to make U (t′, t) unitary.

Exercise 1.2 Exponential Function of Matricesefm Show that the operator defined
by Eq. (1.3.6) is unitary. Use the following facts,

The matrix exponential of a matrix M is defined eM = 1+M + M2

2! + ...

•• eAeB = eA+B if [A,B] ≡ AB−BA = 0. This can be proved by using the above
definition. This equation is a special case of the Baker–Campbell–Hausdorff
formula, which reads

eXeY = eZ

Z = X +Y +
1
2

[X,Y ] +
1

12
[X, [X,Y ]]− 1

12
[Y , [X,Y ]] + · · · ,

• H =H†
�

The postulate gives rise to the general form of the time-dependent Schrödinger’s
equation,

i~
∂
∂t
|ψ〉 =H|ψ〉. (1.3.7)

The operator H is called the “Hamiltonian” of the system. The Hamiltonian, coming
from the classical mechanics, typically is the total energy of the system. For example,

for a particle, the Hamiltonian H = p2

2m +V (x). The case of a particle is only one of
the examples. If the systems are discrete and finite (energy levels), the Hamiltonian is a
finite-dimensional matrix. For example, classically, the energy of a magnetic moment µ
in a magnetic filed B is E = −µ ·B, and quantumly the Hamiltonian is H = −µ ·B, where
the magnetic moment is related to the angular momentum operator L by µ = γL. In
the case of an electron, the angular momentum operator is σ = (σx,σy ,σz), where σi are
the Pauli matrices (2 by 2 matrices). Hence, the dimension of the Hamiltonian is two.

Let’s consider a system with N levels of the energies E1, E2, ..., EN . The energy
eigenstates, |Ei〉, satisfy

H|Ei〉 = Ei |Ei〉. (1.3.8)

The Hamiltonian in the energy bases |Ei〉 is diagonal

H =


E1 0 0 0
0 E2 0 0
...

...
. . .

...
0 0 · · · EN

 . (1.3.9)

1For the sake of simplicity, I won’t use a hat for an operator all the time unless there will be confusion.

https://en.wikipedia.org/wiki/Baker-Campbell-Hausdorff_formula
https://en.wikipedia.org/wiki/Baker-Campbell-Hausdorff_formula
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The solution of the time-dependent Schrödinger’s equation (Eq. (1.3.7)) is

|ψ(t)〉 =
∑
i

αie
−i Ei~ t |Ei〉, (1.3.10)

where αi are the coefficients of the initial state in terms of |Ei〉.
Postulate 1.3 — Measurement. Quantum measurement (collapse). A measure
makes a system |ψ〉 collapse into some state |ψi〉. The possible outcome states |ψi〉
depend on the measurements. For example, if we measure the position of a particle,
the outcome states are |x〉 with −∞ < x <∞. A measurement is described by s set of
operators {Mm}, where m denotes all the possible outcome states. After a measure
measurement, the state become

Mm|ψ〉√
〈ψ|M†mMm|ψ〉

(1.3.11)

with the probability

p(m) = 〈ψ|M†mMm|ψ〉. (1.3.12)

The completeness theorem requires that∑
m

M†mMm = 1. (1.3.13)

For example, the measurement operator on a qubit are

M0 = |0〉〈0| (1.3.14)

M1 = |1〉〈1| (1.3.15)

Exercise 1.3 — Qubit Measurement. The initial qubit state is 1
2 |0〉+

√
3

2 |1〉.
1. What are the two possible states after a measurement of {M0, M1}?
2. What are the probabilities to be the above two states, respectively?

�

Heisenberg uncertainty principle

Postulate 1.4 — Hermiticity. Any physical observables are Hermitian operators. For
example, in the position basis, the position and momentum operators are

x̂ = x (1.3.16)

p̂ = −i~ ∂
∂x

(1.3.17)

Let A be the physical observable operator. The expectation value of A of a state ψ〉
is

〈A〉 = 〈ψ|A|ψ〉. (1.3.18)
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The state |p〉 is the eigenvector of the momentum operator p̂,

p̂|p〉 = p|p〉, (1.3.19)

and for the position operator x̂,

x̂|x〉 = x|x〉. (1.3.20)

Note that the eigenvectors of a Hermitian operator form a complete set of bases of
the space.

The eigenvectors |Ai〉 of A forms a complete set of bases of the state space. The
eigenstates are orthogonal and normal,

〈Aj |Ai〉 = δij . (1.3.21)

That is, any state |ψ〉 can be written as

|ψ〉 =
∑
i

αi |Ai〉. (1.3.22)

The completeness implies that the identity 1 is,

1 =
∑
i

|Ai〉〈Ai | (1.3.23)

The standard deviation of A is σ (A),

σ (A) ≡
√
〈A2〉 − 〈A〉2. (1.3.24)

Two operators A and B are compatible if their commutator [A,B] ≡ AB−BA = 0.
Otherwise, they are incompatible. If

[A,B] = c (1.3.25)

and c is a number, the general uncertainty principle reads

σ (A)σ (B) ≥
|〈ψ|[A,B]|ψ〉|

2
=
|c|
2
. (1.3.26)

Exercise 1.4 Uncertainty Principleuncer Prove the Heisenberg uncertainty principle,
Eq. (1.3.26). Hint: use the Cauchy–Schwarz inequality.

〈ψ|ψ〉〈φ|φ〉 ≥ |〈ψ|φ〉|2, (1.3.27)

where |ψ〉 and |φ〉 are two states. �

The most classical example of the uncertainty principle is about x and p,

[x,p] = i~. (1.3.28)

The uncertainty principle reads

σ (x)σ (p) ≥ ~
2
. (1.3.29)
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1.4 Quantum Dynamics: Schrödinger, Interaction, Heisen-
berg Pictures
In the experiments, we are interested in the dynamics of ant observable A, more
specifically, the expectation

〈A(t)〉 = 〈ψ(t)|A|ψ(t)〉 (1.4.1)

There are three main pictures to interpret and solve the problem.

1.4.1 Schrödinger Picture
Consider that the observable operator A is static and the states |ψ(t)〉 is evolving.

|ψ(t)〉 ≡ |ψ(t)〉S = e−
iHt
~ |ψ(0)〉 (1.4.2)

The expectation value in this picture is

〈A(t)〉 = 〈ψ(t)|A|ψ(t)〉 (1.4.3)

1.4.2 Heisenberg Picture
Consider that the observable operator A(t) is dynamic and the states |ψ(t)〉 is static.

Ah ≡ A(t) = e
iHt
~ Ae−

iHt
~ , (1.4.4)

and the expectation value is

〈A(t)〉 = 〈ψ(0)|Ah|ψ(0)〉. (1.4.5)

The evolution of Ah follows the Heisenberg’s equation,

i~
∂Ah
∂t

= [Ah,H]. (1.4.6)

Exercise 1.5 Proof of the Heisenberg’s equationphe Let U (t) = e−
iHt
~ so that Ah =

U†AU . Differentiating Ah with respect to t gives

∂Ah
∂t

=
∂U†

∂t
AU +U†A

∂U
∂t

(1.4.7)

First, show that the derivative of U (t) is

i~
∂
∂t
U (t) =HU (t). (1.4.8)

Use the two above equations to prove the Heisenberg’s equation. �
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1.4.3 Interaction Picture
When the Hamiltonian includes two terms: one is the original Hamiltonian H0 and
the interaction with the external system V (t), it is convenient to use the interaction
picture, where both the states and the operator are evolving. The total Hamiltonian is
H =H0 +V (t). The state |ψ〉I is

|ψ〉I = ei
H0t
~ |ψ(t)〉S , (1.4.9)

and the operator AI is

AI = ei
H0t
~ Ae−i

H0t
~ , (1.4.10)

The Schrödinger equation becomes

i~
∂
∂t
|ψ〉I = VI (t)|ψ〉I , (1.4.11)

VI (t) ≡ ei
H0t
~ V (t)e−i

H0t
~ . (1.4.12)

Note that the solution to Eq. (1.4.11) is not |ψ(t)〉I = e−i
HI
~ t |ψ(0)〉I because the VI (t) is

time-dependent. The solution to to Eq. (1.4.11) is

|ψ(t)〉I =UI (t, t0)|ψ(t0)〉I (1.4.13)

UI (t, t0) = 1− i
~

∫ t

t0

VI (t
′)UI (t

′, t0)dt′ (1.4.14)

The Heisenberg’s equation becomes

i~
∂AI
∂t

= [AI ,H0]. (1.4.15)

1.5 Harmonic Oscillators
The Hamiltonian of a simple harmonic oscillator is

H =
p2

2m
+
mω2x2

2
, (1.5.1)

where ω =
√
k/m and k is the spring constant. We define the creation operator a† and

the annihilation operator a,

a =

√
mω
2~

(
x+

ip

mω

)
, (1.5.2)

a† =

√
mω
2~

(
x −

ip

mω

)
. (1.5.3)
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Exercise 1.6 Commutation Relationcr Show that

[a,a†] = 1. (1.5.4)

Use the relation [x,p] = i~. �

The Hamiltonian is rewritten as

H = ~ω
(
a†a+

1
2

)
(1.5.5)

= ~ω(N +
1
2

) (1.5.6)

where N = a†a is the number operator. The eigenvector of N is |n〉

N |n〉 = n|n〉, (1.5.7)

where n is the eigenvalue. The number states are orthonormal

〈m|n〉 = δmn. (1.5.8)

Important indentities are

[N,a] = −a, (1.5.9)

[N,a†] = a†, (1.5.10)

As a result, we have

Na†|n〉 =
(
a†N + a†

)
|n〉 = (n+ 1)a†|n〉, (1.5.11)

Na|n〉 = (aN − a) |n〉 = (n− 1)a|n〉, (1.5.12)

These eqautions imply that

a|n〉 = c−|n− 1〉, (1.5.13)

a†|n〉 = c+|n+ 1〉, (1.5.14)

The constants c− and c+ can be fixed by noting that

〈n|a∗a|n〉 = n = |c−|2, (1.5.15)

〈n|aa∗|n〉 = n+ 1 = |c+|2. (1.5.16)

Taking c− and c+ to be positive by convention, c− =
√
n and c+ =

√
n+ 1. We have the

important relations which explain the names, creation and annihilation,

a|n〉 =
√
n|n− 1〉, (1.5.17)

a†|n〉 =
√
n+ 1|n+ 1〉. (1.5.18)
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Note 1.1 — Representation in the number basis. The number n is the number of
the energy quanta. The smallest number of n is n = 0. The physical meaning of |n〉
is a state containing n energy quanta. Thus, |n〉 is called the number state. The
energy of a harmonic oscillator is

En =
(
n+

1
2

)
~ω (1.5.19)

The 1
2~ω is interpreted as the vacuum energy since it exists even when n = 0.

Applying a creation operator on the |n〉, the state |n〉 becomes
√
n+ 1|n+ 1〉, that

is, the a† will create one single quantum to the original state. Similarly, the a will
annihilate one energy quantum from the system. We can also prove that

|n〉 =
(a†)n
√
n!
|0〉. (1.5.20)

The position operator x and momentum operator p can be expressed as

x =

√
~

2mω
(a+ a†) (1.5.21)

p = i

√
mω~

2
(−a+ a†) (1.5.22)

1.5.1 Number States in the Position Bases
As the familiar wave function ψ(x), we can express the |n〉 in the x bases. The
wavefunctions are ψn(x) ≡ 〈x|n〉. Let’s solve the ground states first ψ0(x). We start with

a|0〉 = 0 (1.5.23)

⇒〈x|a|0〉 = 0 (1.5.24)

⇒
√
mω
2~

〈
x

∣∣∣∣∣x+
ip

mω

∣∣∣∣∣0〉 = 0 (1.5.25)

⇒
(
x+

~
mω

∂
∂x

)
ψ0(x) = 0 (1.5.26)

⇒ψ0(x) =
1

π1/4√x0
e
− 1

2

(
x
x0

)2

, (1.5.27)

where x0 =
√

~
mω

Exercise 1.7 Uncertainty of the ground stategs Show that for the ground state
ψ0(x), the uncertainty relation has a equal sign, that is, the state has the minimum
uncertainty,

σ (x)σ (p) =
~
2
. (1.5.28)

�
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Figure 1.2: Wavefunction ψn(x).

Using Eqs. (1.5.20) and (1.5.27), we obtain the expression for φn(x),

ψn(x) =

 1

π1/4
√

2nn!xn+1/2
0

(x − x2
0
∂
∂x

)n
e
− 1

2

(
x
x0

)2

. (1.5.29)

1.5.2 Dynamics of a Harmonic Oscillator
The Heisenberg’s Equations of a and a†(t) are

i~
da†

dt
= [a†,H] = −~ωa†, (1.5.30)

i~
da
dt

= [a,H] = ~ωa, (1.5.31)

(1.5.32)

whose solutions are

a(t) = a(0)e−iωt, (1.5.33)

a†(t) = a†(0)eiωt. (1.5.34)

In terms of x and p, Eqs. (1.5.33) and (1.5.34) read

a(t) = x(t) +
ip(t)
mω

=
(
x(0) +

ip(0)
mω

)
e−iωt, (1.5.35)

a†(t) = x(t)−
ip(t)
mω

=
(
x(0)−

ip(0)
mω

)
eiωt. (1.5.36)

Solving the equations for x(t) and p(t), we have

x(t) = x(0)cosωt +
p(0)
mω

sinωt, (1.5.37)

p(t) = −mωx(0)sinωt + p(0)cosωt. (1.5.38)
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Note 1.2 — Heisenberg picture of x and p of a harmonic oscillator. Equations (1.5.37)
and (1.5.38) are exactly the same as the equations of motion derived from the classical
mechanics. In contrast, x(0) and p(0) are operators. If we take the number state
|n〉, the expectation value 〈n|x(t)|n〉 vanishes. We will not observe an expectation
value 〈x(t)〉 obeying the classical motion. It turns out that the state mostly close to a
classical state is the coherent state |λ〉, which is the eigenvector of the annihilation
operator a,

a|λ〉 = λ|λ〉. (1.5.39)

We will talk more about the coherent states later.

1.6 Coherence and Decoherence at a Glance
Coherence refers to many meanings in different circumstances. We consider its usages in
the context of physics. Roughly speaking, coherence means that two (or more than two)
states (waves, particles) have a well defined correlation as time t or positions x change.
For example, in the two-slit experiment, coherent light source is required to produce
interference. Let the two waves through the two slits be ψ1(x1, t1) and ψ2(x2, t2). The
fully coherence means that if we know the wave ψ1(x1, t1), we can know the ψ2(x2, t2)
at any time and position. In this definition, it seems that every two sinusoidal waves
exp(ik1x −ω1t +φ1) and exp(ik2x −ω2t +φ2) are coherent. However, we also require
k1 = k2 and ω1 =ω2. The reason is as the following. When we measure the interference,
frequently we collect the data for a long time over many periods . The interference
signal is the an time average of the product ψ∗1(t)ψ2(t). |ψ1(t)|2 and |ψ2(t)|2 are the
background intensity. The time-averaged interference is

Iinterference = lim
T→∞

∫ T
0

2Re
[
ψ∗1(t)ψ2(t)

]
T

. (1.6.1)

If the two waves have different frequencies, the time-average vanishes.
Another question is that are any two waves fully coherent if they have the same

frequencies. The answer is not necessary. Why? It is because the phase ψ1 and ψ2 can
fluctuate. The coherence implies that δ = φ1 −φ2 is a constant as time t and position
x changes. In practical situations, as the waves propagate, the environment provides
noises to the phases. As a result, the time-average becomes smaller. This process is
called “decoherence” Typically, a system gradually loses its coherence as t increases or
traveled length x increases.

A more realistic system consists of many waves (states, particles)2,

ψ(x, t) = ψ1(x, t) +ψ2(x, t) +ψ3(x, t) + ... (1.6.2)

The interference involves all the cross-product terms ψ∗1(t)ψ2(t), ψ∗2(t)ψ3(t), ψ∗3(t)ψ4(t),
and so on. To deal with a system containing a large number of particles, it is more
convenient to use a statistical tool than listing all the states. The idea is to use
probabilities to describe distributions of states. This is the motivation of the density
operator (matrix) formulation.

2We use the terms “particle”, “waves”, and “states” interchangeably.
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1.7 Density Operator Formulation

Let’s introduce the concepts of an ensemble.

Note 1.3 — Ensemble. An ensemble is a statistical tool to describe a system of
many particles. An ensemble consists of a large number of virtual copies of a particle.
Ideally, the number of states is infinite. Each copy represents a possible state that a
particle can be in. A specific ensemble is specified by assigning the probability in
each state.

For example, a photon state |photon〉 is decomposed as

|photon〉 = α|L〉+ β|R〉, (1.7.1)

where |L〉 (|R〉) is the left(right)-polarized state. In an ensemble, there are many
photons. Let pL and pR be the probabilities of the left-polarized state and the
right-polarized state, respectively, where

pL + pR = 1. (1.7.2)

The probabilities pL and pR define the ensemble. We can not use the following
expression to describe an ensemble,

((((((((((((((hhhhhhhhhhhhhh
|ensemble〉 = pL|L〉+ pR|R〉, (1.7.3)

since this expression is used for one single state. The mathematical tool to describe
an ensemble is the density matrix ρ̂,

ρ̂ = pL|L〉〈L|+ pR|R〉〈R|. (1.7.4)

an ensemble is a statistical tool to describe a system of many particles. An ensemble
consists of a large number of virtual copies of a particle. Ideally, the number of states
is infinite. Each copy represents a possible state that a particle can be in. A specific
ensemble is specified by assigning the probability in each state.

For example, a photon state |photon〉 is decomposed as

|photon〉 = α|L〉+ β|R〉, (1.7.5)

where |L〉 (|R〉) is the left(right)-polarized state. In an ensemble, there are many
photons. Let pL and pR be the probabilities of the left-polarized state and the
right-polarized state, respectively, where

pL + pR = 1. (1.7.6)
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1.7.1 Density Operators
In a general case, the density matrix ρ̂ can be defined as

ρ̂ =
∑
i

pi |ψi〉〈ψi |, (1.7.7)∑
i

pi = 1, (1.7.8)

0 ≤ pi ≤ 1, (1.7.9)

where |ψi〉 are the basis states, and pi is the probability to find the particle at the ith
state. Most times, |ψi〉 are chosen to be orthonormal vectors. In the definition by
Eq. (1.7.7), the density matrix is a diagonal matrix. However, a density matrix can have
nonzero off-diagonal elements. Consider a new set of orthonormal bases |ai〉, obtained
by the unitary transformation

|ai〉 =
∑
j

Uij |ψj〉. (1.7.10)

where U†U = 1. The matrix element Uij can be obtained explicitly by multiplying 〈ψj ′ |
on the both sides of Eq. (1.7.10),

Uij = 〈ψj |ai〉. (1.7.11)

The inverse transforms are

|ψi〉 =
∑
j

U†ij |aj〉, (1.7.12)

〈ψi | =
∑
j ′

Uj ′i〈aj ′ |. (1.7.13)

In the new basis,

ρ̂ =
∑
i

pi |ψi〉〈ψi | (1.7.14)

=
∑
i

pi

∑
j

U†ij |aj〉


∑
j ′

Uj ′i〈aj ′ |

 (1.7.15)

=
∑
j,j ′

∑
i

piU
†
ijUj ′i

 |aj〉〈aj ′ | (1.7.16)

≡
∑
j,j ′

ρjj ′ |aj〉〈aj ′ |, (1.7.17)

where the element ρjj ′ is given by

ρjj ′ =
∑
i

Uj ′ipiU
†
ij (1.7.18)

=
(
UPU†

)T
, (1.7.19)
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where P is a diagonal matrix whole diagonal elements are pi . In the new bases |aj〉,
the off-diagonal element ρjj ′ can be nonzero. Indeed, the off-diagonal element ρjj ′ is
related to the correlation between the two states |aj〉 and |aj ′〉.
� Example 1.1 Two-Level SystemTL Let’s work out an example of an two-basis density
matrix. Consider an ensemble of the density matrix

ρ = 0|L〉〈L|+ 1|R〉〈R|, (1.7.20)

or in the matrix form

ρ =
(
0 0
0 1

)
. (1.7.21)

Keep in mind that the matrix in Eq. (1.7.21) is written in the definitions(
1
0

)
≡ |L〉, (1.7.22)(

0
1

)
≡ |R〉. (1.7.23)

Now we consider new bases |X〉 and |Y 〉 (linear polarized states)

|L〉 =
1
√

2
(|X〉 − i|Y 〉) , (1.7.24)

|R〉 =
1
√

2
(|X〉+ i|Y 〉) . (1.7.25)

The unitary transformation is(
|L〉
|R〉

)
=U†

(
|X〉
|Y 〉

)
, (1.7.26)

where

U† =

 1√
2

−i√
2

1√
2

i√
2

 , (1.7.27)

U =

 1√
2

1√
2

i√
2

−i√
2

 . (1.7.28)

In the new bases, using Eq. (1.7.19) the density matrix is

ρ̂ =


 1√

2
1√
2

i√
2

−i√
2

(0 0
0 1

) 1√
2

−i√
2

1√
2

i√
2



T

(1.7.29)

=

 1√
2

−i√
2

i√
2

1√
2
.

 (1.7.30)
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Note that the matrix in Eq. (1.7.30) is written in the definitions(
1
0

)
≡ |X〉, (1.7.31)(

0
1

)
≡ |Y 〉. (1.7.32)

The off-diagonal element ρYX = i√
2
reflects the fact that for a right-circular-polarized

state |R〉, the phase difference between |X〉 and |Y 〉 is π/2 (the phase factor exp iπ
2 = i).

�

Exercise 1.8 Density MatrixDM Consider an ensemble of the density matrix

ρ =
1
4
|L〉〈L|+ 3

4
|R〉〈R|. (1.7.33)

Calculate the density matrix in the bases |X〉 and |Y 〉. �

If we measure an observable A on the ensemble, the expectation value is called
“ensemble average”,

〈A〉 =
∑
i

pi〈ψi |A|ψi〉 (1.7.34)

=
∑
i,j

pi〈ψi |ψj〉〈ψj |A|ψi〉 (1.7.35)

=
∑
j

〈ψj |A
∑
i

|ψi〉pi〈ψi︸            ︷︷            ︸
This term is Aρ

|ψj〉 (1.7.36)

=
∑
j

〈ψj |Aρ|ψj〉 (1.7.37)

= Tr(Aρ) . (1.7.38)

Although we derive the ensemble average Eq. (1.7.38) in the |ψi bases, the trace of
a matrix is independent of the bases. Thus, Eq. (1.7.38) is valid in any basis. This
basis-free property is the big advantage of using a trace. One direct application is when
A = 1,

Tr(ρ) =
∑
i

pi = 1, (1.7.39)

which tells the trace of a density matrix is the total probability.

Exercise 1.9 Properties of Density MatrixPDM Some important properties of density
matrix are listed below:

ρ = ρ†

(a)(b) Tr(ρ) = 1
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(c) 0 < Tr
(
ρ2

)
≤ 1

Prove that the above properties are true in any set of bases. �

Note 1.4 Pure and Mixed Ensemble We start with the bases |ψi〉, where ρ is diagonal.
A pure ensemble is specified by pi = 1 of the |ψi〉 and all other pj = 0 for j , i. The
equivalent condition of a pure ensemble is

Tr
(
ρ2

)
= 1, (1.7.40)

which applies to a density matrix in any basis. The condition of a mixed ensemble is

Tr
(
ρ2

)
< 1. (1.7.41)

One particle state is always a pure ensemble. One common mistake is to be
confused by the superposition of one particle and the mixed ensemble.3 Consider a
one-particle state (qubit) composed of the superposition of |0〉 and |1〉.

|ψ〉 = α|0〉+ β|1〉. (1.7.42)

One might think that this state has a density matrix ρ = |α|2|0〉〈0|+ |β|2|1〉〈1|. But,
this is wrong! The correct density matrix is

ρ = |ψ〉〈ψ| (1.7.43)

= (α|0〉+ β|1〉) (α∗〈0|+ β∗〈1|) (1.7.44)

= |α|2|0〉〈0|+ |β|2|1〉〈1|+αβ∗|0〉〈1|+α∗β|1〉〈0| (1.7.45)

=
(
|α|2 αβ∗

α∗β |β|2

)
, (1.7.46)

where(
1
0

)
≡ |0〉, (1.7.47)(

0
1

)
≡ |1〉. (1.7.48)

It is possible to find the bases where ρ is diagonal, since ρ is a hermitian matrix. The
off-diagonal elements in Eq. (1.7.46) describe the correlations between the states |0〉
and |1〉.

An example of a mixed ensemble of qubits is

ρ = |α|2|0〉〈0|+ |β|2|1〉〈1| (1.7.49)

=
(
|α|2 0
0 |β|2

)
, (1.7.50)
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where both |α|2 and |β|2 are nonzero. In this mixed ensemble, the off-diagonal
elements are zero. This means that there is no correlation between the states |0〉 and
|1〉.

If the number of bases is N , the most random mixed ensemble is

ρMR =
1
N

N∑
i=1

|ψi〉〈ψi | (1.7.51)

=
1
N
1N×N , (1.7.52)

where 1N×N is the N -by-N identity. The off-diagonal elements of the ensemble ρMR
are always zero, i.e., there is not any correlation between the basis states.

Exercise 1.10 Pure Ensemble Which density matrices are pure ensembles?

ρ =
(
0.5 0
0 0.5

)
(a)(b)

ρ =
(

cos2θ cosθ sinθ
cosθ sinθ sin2θ

)
(c)

ρ =
(

cos2θ cosθ sinθeiφ

cosθ sinθe−iφ sin2θ

)
(d)

ρ =
(

cos2θ 1
2 cosθ sinθ

1
2 cosθ sinθ sin2θ

)
�

1.7.2 Dynamics of Density Operators
First, the density operator is not an observable, so we can not use the Heisenberg’s
picture to obtain its dynamics. Let’s begin with a density matrix in the diagonal form,

ρ(t) =
∑
i

pi |ψi(t)〉〈ψi(t)|, (1.7.53)

where the dynamics of the states can be obtianed with Schrödinger Picture

i~
∂
∂t
|ψi(t)〉 =H|ψi(t)〉, (1.7.54)

−i~ ∂
∂t
〈ψi(t)| = 〈ψi(t)|H. (1.7.55)

3In many places, mixed states are called instead of mixed ensemble, although the latter is properer.
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Using Eqs. (1.7.53), (1.7.54) and (1.7.55), we obtain

∂ρ(t)
∂t

=
i
~

[ρ(t),H] . (1.7.56)

This equation is known as the von Neumann equation or quantum Liouville equation.
Equation (1.7.56) describes a closed system where Tr

(
ρ2

)
is a constant in time. This

means that the coherence of the system is not changed. How could a system have
dissipation and decoherence? When a system is open to the environment, the interaction
between the system and the environment leads to dissipation and decoherence. The idea
is to write H =Hsys +Henv and to derive a equation only about the reduced density
matrix

∂ρ(t)sys

∂t
=
i
~
[
ρ(t)sys,Hsys

]
+ environment terms, (1.7.57)

where the reduced density matrix is obtained by the partial trace

ρ(t)sys = Trenv(ρ(t)). (1.7.58)

There is not a unique answer how to write the environment terms since that depends on
what kind of environment it is and the interaction. The discussions of the environment
terms belong to the subject “Open Quantum Systems”, which is not the main interest
here. We will adopt the phenomenological methods later.

Exercise 1.11 Quantum Liouville Equation Derive the von Neumann equation,
Eq. (1.7.56). The first step is to differentiate Eq. (1.7.53). �

� Example 1.2 Dynamics of a Two Level System Let the unperturbed Hamiltonian be

H =
(
Ec 0
0 Ev

)
, (1.7.59)

and write the density matrix in this basis

ρ =
(
ρcc ρcv
ρvc ρvv

)
. (1.7.60)

Using the von Neumann equation, Eq. (1.7.56), we can obtain four first-order differ-
ential equations. Two of them are redundant because ρcc + ρvv = 1 and ρcv = ρ∗vc. We
need only two equations

∂
∂t
ρcc = 0, (1.7.61)

∂
∂t
ρcv =

i
~
ρcv (Ev −Ec) , (1.7.62)

with the solutions

ρcc(t) = ρcc(0), (1.7.63)

ρvv(t) = ρvv(0), (1.7.64)

ρcv(t) = ρcv(0)e−iωcvt, (1.7.65)

(1.7.66)
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with ωcv = Ec−Ev
~ . The populations ρcc and ρvv are unchanged in a unperturbed system.

The off-diagonal element ρcv has a constant amplitude and a linearly-growing phase in
time. This means that the coherence of the system is unchanged. In a realistic situation,
the system will be dephased. A phenomenological way to add the dephasing is to add
−γρcv in Eq. (1.7.62),

∂
∂t
ρcv =

i
~
ρcv (Ev −Ec)−γρcv , (1.7.67)

with the solution

ρcv(t) = ρcv(0)e−iωcvt−γt, (1.7.68)

(1.7.69)

and γ is called the dephasing rate. �

Exercise 1.12 Quantum Liouville Equation Derive Eqs. (1.7.61) and (1.7.62). �
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2. Quantization of Fields

The strategy to quantize fields is essentially the same as that for a harmonic oscillator.
We think electromagnetic modes as some sorts of oscillations. Every mode with a
specific frequency ω behaves as a harmonic oscillator. The quantization of a harmonic
oscillator is to make [x,p] = i~. Here, x and p are canonical variables of the system.
The canonical momentum p is a time-derivative of x. In terms of the creation and
annihilation operators, we have the relations

x ∼ a+ a†, (2.0.1)

p ∼ −a+ a†. (2.0.2)

The Maxwell’s equations read

∇ · (ε(r)E) = 0 (2.0.3)

∇ ·B = 0 (2.0.4)

∇×E = −∂B
∂t

(2.0.5)

∇×B = µ(r)ε(r)
∂E
∂t

(2.0.6)

2.1 Single Mode
For an electromagnetic mode of a frequency ω, we look for real solutions of the forms,

Eω(r, t) = Eω(r)e−iωt +E∗ω(r)eiωt (2.1.1)

Bω(r, t) = Bω(r)e−iωt +B∗ω(r)eiωt, (2.1.2)

which satisfy the Maxwell equations. The solutions to the Eω(r) and Bω(r) will depend
on the spatial arrangement of the ε(r) and µ(r). The filed Eω0(r) satisfies

∇ · (ε(r)Eω(r)) = 0, (2.1.3)

∇× (∇×Eω(r)) = µ(r)ε(r)ω2Eω(r). (2.1.4)
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One can solve the above equations analytically for simple geometries or numerically
when geometries are more complicated. Once the Eω(r) is obtained, the magnetic field
Bω(r) is given by

∇×Eω(r) = iωBω(r)

⇒Bω(r) =
∇×Eω(r)

iω
. (2.1.5)

The total energy of the mode is

Hω =
∫
dv

(
ε(r)E2

ω(r)
2

+
B2
ω(r)

2µ(r)

)
, (2.1.6)

which is similar to

H =
p2

2m
+
mω2x2

2
. (2.1.7)

with the analogies

x ∼ Eω(r), (2.1.8)

p ∼ Bω(r). (2.1.9)

It is naturally to speculate1 that

Eω(r) ∼ Eω(r)a+E∗ω(r)a†, (2.1.10)

Bω(r) ∼ −Bω(r)a+B∗ω(r)a†. (2.1.11)

We define the following field operators

Eω(r) =

[
Eω(r)a+E∗ω(r)a†

]
2

, (2.1.12)

Bω(r) =
i
[
−Bω(r)a+B∗ω(r)a†

]
2

(2.1.13)

with the normalization conditions∫
dvε|Eω(r)|2 = ~ω. (2.1.14)

Plugging Eqs. (2.1.12) and (2.1.13) in Eq. (2.1.6), we obtain the Hamiltonian of a single
electromagnetic mode,

Hω = ~ω
(
a†a+

1
2

)
. (2.1.15)

1You might have the same questions that I had as a student. What are the origins of using a harmonic
model to quantize fields? Why is it valid? Why are E and B the canonical variables? I should say that
at least in my opinion, we can not derive physics from the first place. All of these steps are hypotheses
which are to be examined by experiments. The validities rely on whether the results can explain the
observations. To date, it is still the most consistent theory.
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All the observables contains the creation and annihilation operator. We can first
solve the dynamics of a(t) and obtain all the dynamics. Using the Heisenberg’s picture,
the equation reads

∂a
∂t

=
i
~

[H, a] (2.1.16)

= −iωa, (2.1.17)

which has the solution

a(t) = a(0)e−iωt. (2.1.18)

The operator a†(t) is the hermitian conjugate of a(t),

a†(t) = a†(0)eiωt. (2.1.19)

Derivation 2.1 — Bonus Credits!. It requires some efforts to derive Eq. (2.1.15). We
sketch the steps
(a) Plug Eqs. (2.1.12) and (2.1.13) in Eq. (2.1.6).
(b) Show that the integral of the magnetic term is equivalent to the electric term.

Replace the magnetic term with Eq. (2.1.5). Calculate the integrals with two
curls by the integration by parts. Use the identity of vector calculus∫

V
dvF · (∇×A) =

∫
V
dvA · (∇×F) +

∫
S

(A×F) · da, (2.1.20)

where A and F are arbitrary vector fields. Use Eq. (2.1.4) to get rid of the curls.
(c) Use the normalization condition Eq. (2.1.14).

Note 2.1 Quantization fo Fileds The procedures to quantize a field are:
Find the the eigenmodes (normal modes).

(a)(b) Find the canonical variables.
(c) Define the creation and annihilation operators.
(d) [a,a†] = 1

2.2 Multimode
We have shown how to quantize a single mode of light. We can extend the formulation
to multimodes. Let m denote the quantum number of a mode. The total Hamiltonian is

H =
∑
m

~ωm
(
a†mam +

1
2

)
. (2.2.1)

For example, m can denote the discrete quantum number of a waveguide, or the
continuous quantum number k of a plane wave. If m are discrete numbers, we have the
relations

[am, a
†
m′ ] = δmm′ . (2.2.2)



32 Chapter 2. Quantization of Fields

The total field is

E(r) =
∑
m

Em(r). (2.2.3)

The field operators of the mode m are

Em(r) =

[
Em(r)a+E∗m(r)a†

]
2

, (2.2.4)

Bm(r) =
i
[
−Bm(r)a+B∗m(r)a†

]
2

(2.2.5)

with the normalization conditions∫
dvε|Em(r)|2 = ~ωm. (2.2.6)

The magnetic field operator is given by

Bm(r) =
∇×Em(r)
iωm

. (2.2.7)

� Example 2.1 — Casimir Force in a Nutshell!. The vacuum energy of the total Hamil-
tonian is〈

0

∣∣∣∣∣∣∣∑k ~ωk

(
a†kak +

1
2

)∣∣∣∣∣∣∣0
〉

=
∑
k

~ωk

2
. (2.2.8)

The integral depends on how many modes there are. The most famous example is the
Casimir effect. Consider two parallel metal plates.

The modes in the middle have the wave vector

k =
(Nπ
d
,ky , kz

)
. (2.2.9)

Therefore, the vacuum energy of the middle space is

E0(d) =
~
2
× 2×

(∫
Lydky

2π

∫
Lzdkz

2π

)∑
N

c

√
k2
y + k2

z +
N 2π2

d2 . (2.2.10)
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This integral is divergent for any separation d. The potential energy of the system U (d)
is defined by

U (d) = E0(∞)−E0(d). (2.2.11)

Although both the two terms are divergent, their difference can be evaluated (See Ref.
[Milonni1992] or Sec. 2.6 of Ref. [Gerry2005]) as

U (d) =
−π2~cLyLz

720d3 . (2.2.12)

The force per unit area is then

Fc
LyLz

=
1

LyLz

−∂U
∂d

= −240π2~c
d4 . (2.2.13)

�

2.3 Number States
The eigenstates of the photon Hamiltonian, Eq. (2.2.1) are the dirext product of the
number states |n1〉 ⊗ |n2〉.... which is denoted as |n1n2...〉. The total energy of the
number states |n1n2...〉 is

〈...n2n1|H|n1n2...〉 =
∑
m

〈
...n2n1

∣∣∣∣∣~ωm (
a†mam +

1
2

)∣∣∣∣∣n1n2...
〉

(2.3.1)

=
∑
m

(
nm +

1
2

)
~ωm. (2.3.2)

For simplicity, we consider a single-mode system in the following. Since the number
states are the eigenstates. The expectation values of the observables are static. The
expectation values of E(t) is

〈E(t)〉 =
〈
n

∣∣∣∣∣∣∣
[
Eω(r)a+E∗ω(r)a†

]
2

∣∣∣∣∣∣∣n
〉

= 0. (2.3.3)

The standard deviation of E(t) of a number state |n〉 does not vanish

σ (E(t)) =
√〈

E(t)2〉− 〈E(t)〉2 (2.3.4)

=
√〈

E(t)2〉 (2.3.5)

= |Eω(r)|

√
n+ 1

2

2
(2.3.6)
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Exercise 2.1 — Standard Deviation. Show Eq. (2.3.6). Hint: the operator E(t)2 is

E(t)2 =


[
Eω(r)a+E∗ω(r)a†

]
2


2

(2.3.7)

=
|Eω(r)|2(aa† + a†a) +

[
Eω(r) ·Eω(r)a2 +E∗ω(r) ·E∗ω(r)(a†)2

]
4

. (2.3.8)

The expectation of E(t)2 of a number state is〈
n
∣∣∣E(t)2

∣∣∣n〉 . (2.3.9)

�

2.4 Plane Waves
The eigenmodes in vacuum are the plane waves with the quantum number k and s
(polarizations). The eigenmode Em(r) is

Em(r) = Ek,s(r) (2.4.1)

=
1
√
V
Ek,se

ik·r (2.4.2)

=

√
~ω
ε0V

ek,se
ik·r, (2.4.3)

where V is the volume where the waves exist. ek,s denotes the two possible polarizations.
The total Hamiltonian reads

H =
∑
k,s

~ωk

(
a†k,sak,s +

1
2

)
. (2.4.4)

The electric and magnetic field operators are

Ek,s(r) =

[
Ek,sa+E∗k,s(r)a

†
]

2

=

√
~ωk

ε0V

[
ek,seik·ra+ e∗k,se

−ik·ra†
]

2
, (2.4.5)

Bk,s(r) =
k̂
c
×Ek,s

=

√
~ωk

ε0V

[
k̂ × ek,seik·ra+ k̂ × e∗k,se

−ik·ra†
]

2c
. (2.4.6)

2.5 Thermal Ensemble
An ensemble of photons is specified by the density matrices. The most classic example
is a system in the thermal equilibrium. The equilibrium is reached when a photonic
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system is in contact with a heat reservoir (environment). For a given temperature T ,
according to statistical mechanics, the probability to occupy a state n is proportional to

p(n) ∼ e−
En
kBT , (2.5.1)

where kB is the Boltzmann’s constant. Considering the normalization, the probability is

p(n) =
e
− En
kBT∑

m

e
− EmkBT

(2.5.2)

=
e
− En
kBT

Z
, (2.5.3)

with the partition function Z

Z =
∑
m

e
− EmkBT . (2.5.4)

Thus, the density operator of a thermal ensemble is

ρth =
∑
n

p(n)|n〉〈n| (2.5.5)

=
∑
n e
− En
kBT |n〉〈n|
Z

(2.5.6)

=
e
− HkBT

Tr[e−
H
kBT ]

(2.5.7)

Exercise 2.2 — Partition Function. Show that the partition function Z of a single
mode photonic system is

Z =
exp

(
− ~ω

2kBT

)
1− exp

(
− ~ω
kBT

) . (2.5.8)

Use Em =
(
m+ 1

2

)
~ω in Eq. (2.5.4) �
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The average number of the thermal ensemble is

〈N̂ 〉 = Tr[ρthN̂ ] (2.5.9)

=
∑
m

〈m|ρthN̂ |m〉 (2.5.10)

=
∑
m

m〈m|ρth|m〉 (2.5.11)

=
∑
m,n

me
−~ω(n+1/2)

kBT

Z
〈m|n〉〈n|m〉 (2.5.12)

=
∑
m

me
−~ω(m+1/2)

kBT

Z
See Derivation 2.3 (2.5.13)

=
1

exp ~ω
kBT
− 1

, (2.5.14)

which is the Bose-Einstein distribution.
Derivation 2.2 Trick of Sums of Series trick Let

Z̃(x) =
∞∑
m=0

e−mx =
1

1− e−x
. (2.5.15)

The trick to calculate the following sums

Z̃l(x) ≡
∞∑
m=0

mle−mx, (2.5.16)

where l is an integer, is from the relation

Z̃l(x) = (−1)l
∂lZ̃

∂xl
. (2.5.17)

Exercise 2.3 — Standard Derivation of N̂ . Calculate σ
(
N̂

)
of an thermal ensemble

of temperature T . Use

σ
(
N̂

)
=

√
〈N̂ 2〉 − 〈N̂ 〉2, (2.5.18)

〈N̂ 〉 = Tr[ρthN̂ ], (2.5.19)

〈N̂ 2〉 = Tr[ρthN̂
2]. (2.5.20)

�



2.6 Black-Body Radiation 37

Figure 2.1: Energy density of a thermal ensemble of photons. Image Source

2.6 Black-Body Radiation
The average energy of one single mode is 〈N̂ 〉~ω. The density of state of a frequency
per unit volume g(ω) is

g(ω) =
ω2

π2c3 . (2.6.1)

The average energy density U (ω) is

U (ω) = 〈N̂ 〉~ωg(ω) (2.6.2)

=
~ω3

π2c3
1

exp ~ω
kBT
− 1

. (2.6.3)

Its classical analog is the Rayleigh-Jeans formula

U (ω) = g(ω)kBT =
ω2

π2c3kBT , (2.6.4)

which leads to the ultraviolet catastrophe of the classical physics.

Derivation 2.3 — Density of States. A cuboid has the side lengths Lx, Ly and Lz.
The allowed wave vectors are

kx =
2πlx
Lx

(2.6.5)

ky =
2πly
Ly

(2.6.6)

kz =
2πlz
Lz

(2.6.7)

http://ne.phys.kyushu-u.ac.jp/seminar/MicroWorld1_E/Part3_E/P34_E/Planck_formula_E.htm
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where lx, ly and lz are integers. The change of the total number m of modes is

∆m = 2∆lx∆ly∆lz = 2
(
LxLyLz
(2π)3

)
∆kx∆ky∆kz, (2.6.8)

where the factor 2 accounts for the polarizations. In the continuum limit, it becomes

dm
V

=
( 1
4π3

)
dkxdkydkz (2.6.9)

=
1

4π3 4πk2dk (2.6.10)

=
1
π2
ω2dω

c3 , (2.6.11)

⇒ g(ω) ≡ 1
V
dm
dω

=
ω2

π2c3 . (2.6.12)

2.7 Quadrature Operators
We have applied the ideas of a harmonic oscillator to quantize fields. The conjugate
variables of a particle are x and p, which are just numbers. Unlike a particle, an photon
has field operators E(r) and B(r), which have values at every position. The similarities
of them are the creation and annihilation operators a and a†. It is then useful to define
the dimensionless operators for photons. We introduce the quadrature operators,

X =
a+ a†

2
, (2.7.1)

Y =
a− a†

2i
. (2.7.2)

The operator X is the dimensionless position operator, and the operator Y is the
dimensionless momentum. They have the relation

[X,Y ] =
i
2
. (2.7.3)

Using the generalized uncertainty relation, we obtain

σ (X)σ (Y ) ≥ |〈[X,Y ]〉|
2

=
1
4
. (2.7.4)

The electric field operator of a mode m is rewritten as

Em(r) = Re[Em(r)]X − Im[Em(r)]Y . (2.7.5)

In the case of plane waves, the electric field operator of a mode {k, s} is

Ek,s(r) =

√
~ωk

ε0V

{
Re[ek,s]cos(k · r)X − Im[e∗k,s]sin(k · r)Y

}
. (2.7.6)
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3. Phase Space Pictures

The state of a classical particle is fully determined by its x and p. A useful way to
represent the states is the phase space (x,p), where the horizontal axis is x and the
vertical axis is p. A state of a classical particle is one point in the phase phase. The
time evolution of a state is the trajectory traveled by the particle. The classic example is
the harmonic oscillator with

x(t) = x0 cos(ωt +φ) , (3.0.1)

p(t) = −ωx0 sin(ωt +φ) , (3.0.2)

or in the dimensionless expression

x̃(t) =
x(t)
x0

= cos(ωt +φ) , (3.0.3)

p̃(t) =
p(t)
ωx0

= −sin(ωt +φ) . (3.0.4)

The state travels along the trajectory is a unit circle (see Fig. 3.1).

x̃

ỹ

(x̃(t), ỹ(t))

φ

Figure 3.1: A classical state is a point in the phase space. The motion of a state is a
trajectory. In the case of a harmonic ocsillator, the trjectory is a circle.
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An ensemble of classical particles are described by the phase space probability
density f (x,p), where to find a particle with a position x and a momentum p is given by

f (x,p)dxdp, (3.0.5)

and the normalization condition is∫
dx

∫
dpf (x,p)dxdp = 1. (3.0.6)

Classically, the function f (x,p) of a pure state, i.e., a single particle, is a delta function
f (x,p) = δ(x − x0)δ(p − p0).

We have make the analogies x↔ X and y↔ Y . One question arises: can we define
a function similar to f (x,p) to describe states or ensembles of photons? The problem
is that a quantum state can not have well-defined X and Y at the same time. Thus, a
quantum state is not a single point in the phase space. For a coherent state |α〉, we have
the relations

X =
α +α∗

2
, (3.0.7)

Y =
α −α∗

2i
. (3.0.8)

The state is a blurred circle in the phase space (see Fig. 3.2) because of the uncertainty
relations. Coherent states are the states satisfying the minimum uncertainty relations.
In general, an arbitrary state can have a very broad distribution in the phase space.

X

Y

|α〉|α〉

δφ

√
n

σ(Y ) = 1
2

σ(X) = 1
2

Figure 3.2: A coherent state is a fuzzy circle in the phase space.

Quantum states can be represented in the (X,Y ) space, or equivalently the complex
α space. It is then to desire to define a probability density f (X,Y ) or f (α). However,
there is not a unique way to define a probability density of a quantum state. We are
going to introduce the three most often distributions,

• Wigner distribution
• Q-function
• P -function
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Note that the definitions and calculations of these functions are quite mathematically
involved. These functions serve as quantitative tools to describe the phase space
probability densities. It is fine to have a qualitative picture in mind first and know
more calculations when it is needed.

3.1 Properties of Coherent States

3.1.1 Orthogonality
Two coherent states |α〉 and |β〉 are not orthogonal,

〈β|α〉 = e−
(|α|2+|β|2)

2

∑
n,m

(β∗)m(α)n
√
m!n!

〈m|n〉 (3.1.1)

= e−
(|α|2+|β|2)

2

∑
n

(β∗)n(α)n

n!
(3.1.2)

= e−
(|α|2+|β|2)

2 eβ
∗α (3.1.3)

= e−
|α−β|2

2 e
β∗α−βα∗

2 , (3.1.4)

which does not vanish.

3.1.2 Identity
The identity can be expressed with the coherent states,

∫
d2α
π
|α〉〈α| ≡

∫
dRe[α]dIm[α]

π
|α〉〈α| = 1. (3.1.5)

Derivation 3.1 — Identity with Coherent States. The proof of Eq. (3.1.5) is as follows.
Let α = reφ and.

dα2 = dRe[α]dIm[α] = rdrdθ. (3.1.6)

The left hand side of Eq. (3.1.5) becomes∫
rdrdθ
π
|α〉〈α| =

∫
rdrdθ
π

e−r
2
∑
m,n

ei(n−m)θrm+n

n!
|m〉〈n| (3.1.7)

=
∑
n

∫
dre−r

2
2r2n+1

n!
|n〉〈n| (3.1.8)

=
∑
n

∫
due−uun

n!
|n〉〈n| (3.1.9)

=
∑
n

|n〉〈n| = 1. (3.1.10)
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3.1.3 Coherent State Representations of Operators
Any operator X can be expressed in the coherent state bases with the identity Eq. (3.1.5),

X =
∫
d2α
π

∫
d2β

π
|α〉〈α|X |β〉〈β|. (3.1.11)

However, coherent states are not orthogonal, so the coherent states form an overcom-
plete set of bases.1 It is possible to write X in the coherent state diagonal form.

An operator X is uniquely determined 〈α|X |α〉. The diagonal element 〈α|A|α〉
in the number state basis is

〈α|X |α〉 = exp−|α|2
∑
m,n

〈n|X |m〉αm(α∗)n
√
m!n!

, (3.1.12)

indicating that 〈α|X |α〉 contains all the information of the elements 〈n|X |m〉, which
forms a complete set.

Coherent state diagonal representation. Suppose that X has a series expansion
of a and a† in the antinormal ordering,

X =
∑
mn

χAnma
n(a†)m, (3.1.13)

where Xnm is a c-number. The subscript A denotes the antinormal ordering. Inserting
the identity, we obtain

X =
∑
mn

χAnma
n

(∫
d2α
π
|α〉〈α|

)
(a†)m (3.1.14)

=
∫
d2αχA(α)|α〉〈α| (3.1.15)

where

χA(α) =
1
π

∑
mn

χAnmα
n(α∗)m, (3.1.16)

is a c-number.

3.2 Phase Space Distributions
Given a density matrix ρ, there are three important distribution functions which are the
quantum analogs of the classical probability density f (x,p).

3.3 Wigner Distribution
The Wigner function W (α) is defined as

W (α) =
∫
d2η

π2 e
η∗α−ηα∗χW (η), (3.3.1)

where the characteristic function χW (η) is

χW (η) = Tr
[
ρeηa

†−η∗a
]
. (3.3.2)

1See Se. 5.4. of Ref. [Garrison2008] for a more rigorous discussion.
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Exercise 3.1 — Normalization. Show that∫
d2α

π2 e
η∗α−ηα∗ = δ2(η) ≡ δ(Re[η])δ(Im[η]), (3.3.3)

and use the result and Eq. (3.3.1) to show∫
d2αW (α) = 1. (3.3.4)

Hint: a delta function can be expressed as

δ(x) =
1

2π

∫
eikxdk. (3.3.5)

�

The ensemble average of an operator X in this representation is

〈X〉 =
∫
d2αχW (α)W (α), (3.3.6)

where

χW (α) =
∑
n,m

χWnmα
n(α∗)m (3.3.7)

The coefficient χWnm is the Weyl(symmetric)-ordering representation of an operator X,

X =
∑
m,n

χWnm

(
(a†)nam + am(a†)n

2

)
. (3.3.8)

3.4 Glauber–Sudarshan P -function
The P -function is defined by

ρ =
∫
d2αP (α)|α〉〈α|, (3.4.1)

and satisfies the normalization condition

1 = Tr[ρ] =
∫
d2αP (α). (3.4.2)

The P -function can be obtained by the normal-ordering characteristic function

P (α) =
∫
d2η

π2 e
η∗α−ηα∗χN (η), (3.4.3)

where the characteristic function χN (η) is

χN (η) = Tr
[
ρeηa

†
e−η

∗a
]
. (3.4.4)
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The ensemble average of an operator X in this representation is

〈X〉 =
∫
d2αχN (α)P (α), (3.4.5)

where

χN (α) =
∑
n,m

χNnmα
n(α∗)m (3.4.6)

The coefficient χNnm is the normal-ordering representation of an operator X,

X =
∑
m,n

χNnm(a†)man. (3.4.7)

Note 3.1 — Classical States and Nonclassical States. A state with P (α) < 0 is
defined as a nonclassical state.

3.5 Q-function
The Q-function is defined by

Q(α) =
1
π
〈α|ρ|α〉, (3.5.1)

which is always positive since it is the diagonal element of the density matrix. The
function Q(α) satisfies

0 ≤Q(α) ≤ 1
π
, (3.5.2)

and

Tr[ρ] =
∫
d2αQ(α) = 1. (3.5.3)

The Q-function can be obtained by the antinormal-ordering characteristic function

Q(α) =
∫
d2η

π2 e
η∗α−ηα∗χA(η), (3.5.4)

where the characteristic function χA(η) is

χA(η) = Tr
[
ρe−η

∗aeηa
†
]
. (3.5.5)

The ensemble average of an operator X in this representation is

〈X〉 =
∫
d2αχA(α)Q(α), (3.5.6)

where

χA(α) =
∑
n,m

χAnmα
n(α∗)m. (3.5.7)

The coefficient χAnm is the antinormal-ordering representation of an operator X,

X =
∑
m,n

χAnma
n(a†)m. (3.5.8)
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W (α) Q(α) P (α)

coherent state |α0〉 2
πe
−2|α−α0|2 1

πe
−|α−α0|2 δ2(α −α0)

thermal ensemble 1
π(n̄+1/2) exp

(
− |α|

2

n̄+1/2

)
1

π(n̄+1) exp
(
− |α|

2

n̄+1

)
1
π(n̄) exp

(
− |α|

2

n̄

)
pure number ensemble |1〉〈1| −(1− 4|α|2) 2

πe
−2|α|2 |α|2

π e
−|α|2 singular

Table 3.1: Examples of W (α), Q(α), and P (α)

Note 3.2 — Coherent States. (a) The phase space of photon states or ensembles
are described by the two dimensional complex α plane.

(b) The real part and imaginary part of α are related to the quadrature operator
X and Y .

X = Re[α], (3.5.9)

Y = Im[α]. (3.5.10)

(c) A coherent state |α0〉 is a fuzzy circle on the complex α plane.
(d) The coherent states are not orthogonal, so they are overcomplete.
(e) There are three ways to write the probability density

• Wigner distribution W (α): symmetric ordering
• Q-function Q(α): antinormal ordering
• P -function P (α): normal ordering
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4. Light-Matter Interaction

Light-matter interactions occur when charged particles accelerate in time-dependent
electric field. An accelerating charge particle generates light, and conversely electric
fields cause forces on charges particle. In most scenarios, magnetic field does not
directly interact with matter since it is easier to have charges, electric dipoles than
magnetic dipoles.

Time-dependent charges can be described by a charge density ρ(r, t). It is more
often to use dipoles and currents to describe light-matter interaction. Polarization P
(dipole) and currents density J have the relations

∇ · J+
∂ρ

∂t
= 0, (4.0.1)

J =
∂P
∂t
. (4.0.2)

4.1 Hamiltonian
4.1.1 Interaction Hamiltonian

According to classical mechanics, a charge particle has the Hamiltonian (SI units)

H =
(p− qA)2

2m
+ qΦ(r, t), (4.1.1)

where q is the charge of the particle not the position. Φ(r, t) is the electric potential. In
the case of an electron, q = −e, we have

H =
(p+ eA)2

2m
− eΦ(r, t). (4.1.2)

We can decompose it into H0 and HI ,

H0 =
p2

2m
, (4.1.3)

HI =
e (p ·A+A ·p)

2m
+
e2A2

2m
− eΦ . (4.1.4)
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Typically, the term e2A2

2m is dropped since the momentum of field eA is usually small
than the electron’s momentum p 1. Since the momentum p is a differential operator,
p ·A is not equal to A ·p. The vector potential A and Coulomb’s potential Φ are not
unique. The Maxwell’s equations are invariant under the gauge transformations

A′ = A+∇λ(r, t), (4.1.5)

Φ ′ = Φ − ∂λ(r, t)
∂t

. (4.1.6)

The fields are given by

B = ∇×A, (4.1.7)

E = −∇Φ − ∂A
∂t
. (4.1.8)

The Gauge ∇ ·A = 0 is frequently used in quantum optics. In this gauge, the interaction
Hamiltonian (dropping e2A2

2m ) becomes

HI =
e (A ·p)
m

− eΦ . (4.1.9)

If Φ = 0 is chosen 2, the interaction Hamiltonian becomes

HI =
e (A ·p)
m

(4.1.10)

= −
∫
dvA · J (4.1.11)

where we use
∫
dvJ = −epm . Another choice is the Göppert-Mayer gauge,

λ = −(r− r0) ·A(r0). (4.1.12)

In this gauge, we have

A′ = A(r)−A(r0), (4.1.13)

Φ ′ = −e(r− r0) ·E(r0) ≡ −d ·E, (4.1.14)

where the dipole operator is −e(r−r0). The so-called dipole approximation is when A(r)
is almost a constant, i.e., A(r) ' A(r0). This approximation is valid when the charge
distributions are within a small region. The interaction Hamiltonian becomes

HI = −E ·d (4.1.15)

1Well, this is a sloppy argument. In electromagnetism, the higher-order terms of the vector potentialA
are relativistic. In this viewpoint, the term e2A2

2m is proportional to v2

c2 .
2In the region without charges ∇ ·E = 0, we can define E = −∇Φ . Using the gauge transformation

λ =
∫
Φdt, we can eliminate Φ and make ∇ ·A = 0.
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4.1.2 Total Hamiltonian
The total Hamiltonian of the light-matter is

H =H0 +HI +HF . (4.1.16)

where

HF =
∑
m

∫
dv

(
ε(r)E2

m(r)
2

+
B2
m(r)

2µ(r)

)
. (4.1.17)

The Hamiltonian of matter H0 is not necessary of the form of a free particle. In general,
H0 describes a N -level system,

H0 =
∑
n

En|En〉〈En|. (4.1.18)

The simplest case is a two level system (TLS)

HT LS =
(
Ec 0
0 Ev

)
. (4.1.19)

The interaction Hamiltonian for a a two level system is

HI =
(
〈Ec| −E ·d|Ec〉 〈Ec| −E ·d|Ev〉
〈Ev | −E ·d|Ec〉 〈Ev | −E ·d|Ev〉

)
(4.1.20)

= −E ·
(
dcc dcv
dvc dvv

)
, (4.1.21)

where the dipole matrix element is dnn′ = 〈En|d|En′〉. In many cases, the diagonal
elements of dipole matrices vanishes since the eigenfunctions are typical symmetric.

4.2 Classical Fields and Quantum Matter
We consider that the matter is described by a N -level system and treat the electric field
E(r, t) as a number. The Hamiltonian is

H =
∑
n

En|En〉〈En| −E ·d. (4.2.1)

In the case of a TLS system, the Hamiltonian is

H =
(
Ec 0
0 Ev

)
−E ·

(
0 dcv
dvc 0

)
, (4.2.2)

where we assume the diagonal elements of the dipole matrix are zeros. To solve the
dynamics, we start with the interaction picture where state is

|ψ〉 = Cc(t)e
−iωct |Ec〉+Cv(t)e−iωvt |Ev〉. (4.2.3)
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It is clear that without an external field E, the coefficients Cc(t) and Cv(t) are constant
in time. Plugging Eq. (4.2.3) in the Schrödinger equation, we obtain

i~
∂
∂t

(
Cc
Cv

)
= −E ·

(
0 dcvei(ωc−ωv)t

dvcei(ωv−ωc)t 0

)(
Cc
Cv

)
. (4.2.4)

The dipole matrix elements in the interaction picture oscillate rapidly in time. The
electric field E = Eωe−iωt +E∗ωeiωt needs to have a frequency ω ' (ωc −ωv) in order to
create transition. We write

ω =ωcv +∆, (4.2.5)

where ωcv =ωc −ωv and ∆ is the detuning.

4.2.1 Rabi Model

Let the external field E = E0 cosωt = E0

(
e−iωt+eiωt

2

)
. The equation of the coefficients is

i~
∂
∂t

(
Cc
Cv

)
=

 0 V0
2

[
e−i∆t + ei(2ωcv+∆)t

]
V ∗0
2

[
ei∆t + e−i(2ωcv+∆)t

]
0

(CcCv
)
. (4.2.6)

where

V0 = −E0 ·dcv . (4.2.7)

The equation needs to be solved numerically. The rotating-wave-approximation (RWA),
where the high frequency terms are dropped is often used. Under the RWA, the equation
reads

i~
∂
∂t

(
Cc
Cv

)
=

(
0 V0

2 e
−i∆t

V ∗0
2 e

i∆t 0

)(
Cc
Cv

)
. (4.2.8)

Eliminating the variable Cv , we obtain the second-order differential equation

C̈c + i∆Ċc +
|V0|2

4~2 Cc = 0. (4.2.9)

The general solution is

Cc(t) = A+e
iλ+t +A−e

iλ−t (4.2.10)

with

λ± = ∆±
√
∆2 +

|V0|2
~2 ≡ ∆±ΩR. (4.2.11)

The Rabi frequency ΩR =
√
∆2 + |V0|2

~2 . If initially Cv(0) = 1, the solution is

Ce = ei
∆t
2
iV0

~ΩR
sin

ΩRt
2
, (4.2.12)

Cg = ei
∆t
2

[
cos

ΩRt
2
− i ∆

ΩR
sin

ΩRt
2

]
. (4.2.13)
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It can be checked that |Cc|2 + |Cv |2 = 1.

Figure 4.1: Population of the excited state as a function of time

4.2.2 Fermi’s Golden Rule
If the external field is small, one can apply the perturbation method (for example, see
Chapter 5 of Ref. [Saku1994]) to obtain (or from Eq. (4.2.12))

Pc(t) = |Cc|2 =
|V0|2 sin2 ∆t

2

~2∆2 . (4.2.14)

Figure 4.2: The transition probability Pc(t) at a momentum t. When t is large, the
function is approximately a delta function.

When t is large, the fraction is approximately a delta function

sin2 ∆t
2

∆2 ' πt
2
δ(∆). (4.2.15)
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The transition rate Wv→c is

Wv→c =
Pc(t)
t

=
π
2
|V0|2

~2 δ(ω −ωcv) (4.2.16)

=
π
2
|E0 ·dcv |2

~2 δ(ω −ωcv) (4.2.17)

=
π
2
| 〈c|HI |v〉 |2

~2 δ(ω −ωcv), (4.2.18)

which is the famous Fermi’s Golden rule.

4.3 Classical Matter and Quantum Fields
Currents and charges are treated as classical numbers. Time-dependent charges and
currents are not independent variables. They are related by the continuity equation. This
assumption is adequate when currents come form a lot of electrons and the quantum
fluctuations are ignored. The typical problem is how a current source j(r, t) interacts
with photons. Thus, currents are given functions, and the problem is to solve filed
Hamiltonian.

H =HF +HI (4.3.1)

=
∑
m

~ωma†mam −
∑
m

Em ·d (4.3.2)

=
∑
m

~ωma†mam −
∑
m

(
Ema+E∗ma†

2

)
·d, (4.3.3)

where we should treat the dipole as a classical function with a frequency ω ,

d = d0e
−iωt =

∫
dvP =

∫
dvP0e

−iωt (4.3.4)

= −iω
∫
dvJ. (4.3.5)

We can also use vector potential operators via the relation

E = − ∂
∂t

A, (4.3.6)

A =
(
Ema−E∗ma†

2iω

)
. (4.3.7)

Considering a single mode and ωm =ω, the Hamiltonian becomes

H = ~ωa†a−
∫
dvA · J. (4.3.8)

4.3.1 Generation of Coherent States
We are going to show a coherent state |α〉 can be generate by a harmonic oscillating
current density J = J0(r)eiωt . 3 The Hamiltonian becomes

H = ~ωa†a+
(
V0a+V ∗0a

†
)
, (4.3.9)

3Physical currents should be real. We can think that eiωt comes from cosωt
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where

V0 = iωeiωt
∫
dvEω(r) · J0(r). (4.3.10)

In the interaction picture, the interaction Hamiltonian becomes

HI =
(
VIa+V ∗I a

†
)
, (4.3.11)

where the interaction potenital is time-indepdenent and reads

VI = iω
∫
dvEω(r) · J0(r). (4.3.12)

The evolution of a state is given by

|ψ(t)〉I = T̂ [e−i
∫ HI (t)

~ dt]|ψ(0)〉I (4.3.13)

where T̂ [] denotes the time-ordering4. In this case, the interaction Hamiltonian in the
interaction picture is time-independent,

|ψ(t)〉I = e−i
HI (t)
~ t |ψ(0)〉I (4.3.14)

= eα
∗a−αa† |ψ(0)〉I , (4.3.15)

where

α = i
V ∗I
~
t (4.3.16)

=
iω

∫
dvE∗ω(r) · J∗0(r)

~
t. (4.3.17)

Equation (4.3.15) is indeed the displacement operator. If the initial state is the ground
state |0〉, the final state is a coherent state,

|ψ(t)〉I = eα
∗a−αa† |0〉 (4.3.18)

= |α〉. (4.3.19)

One interesting observation is that |α| ∼ t and the photon number n ∼ t2 grows
quadratically.

4.4 Fully Quantum Approach
Both matter and field are quantized. The Hamiltonian is

H =
∑
m

~ωma†mam +
∑
n

En|En〉〈En| −E ·d, (4.4.1)

4Time-ordering is necessary if HI is time-dependent and [HI (t1),HI (t2)] , 0
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where the electric field operator is

E =
∑
m

Emam +E∗ma†m
2

, (4.4.2)

and the dipole matrix operator is
d11 d12 . . .
d21 d22
...

. . .

 , (4.4.3)

with dnn′ = 〈En|d|En′〉 and d = qr.

4.4.1 Two-Level System and Single-Mode Photons
The Hamiltonian is

H = ~ωa†a+
(
Ec 0
0 Ev

)
−E ·d. (4.4.4)

where the electric field operator is

E =
Eωa+E∗ωa†

2
, (4.4.5)

and the dipole matrix operator is(
0 dcv
dvc 0

)
, (4.4.6)

where we assume that the diagonal terms vanish. The transition rate from |n〉|Ec〉 to
|n+ 1〉|Ev〉 is obtained by

Wemission =
π
2
|〈n+ 1|〈Ev |HI |n〉|Ec〉|2

~2 δ(ω −ωcv) (4.4.7)

=
(n+ 1)π

2
|Eω ·dcv |2

~2 δ(ω −ωcv). (4.4.8)

An interesting result occurs when n = 0. The emission is not zero when n = 0. This is
the phenomenon “spontaneous emission”. When n > 0, it corresponds to the stimulated
emission. The transition rate from |n〉|Ev〉 to |n− 1〉|Ec〉 is obtained by

Wabsorption =
π
2
|〈n− 1|〈Ec|HI |n〉|Ev〉|2

~2 δ(ω −ωcv) (4.4.9)

=
nπ
2
|E∗ω ·dvc|2

~2 δ(ω −ωcv). (4.4.10)

4.4.2 Jaynes–Cummings Model
The TLS and single-mode photon Hamiltonian can be further simplified with the RWA,
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The Hamiltonian is

H = ~ωa†a+
(
Ec 0
0 Ev

)
− 1

2

(
0 Eω ·dcva+E∗ω ·dcva†

Eω ·dvca+E∗ω ·dvca† 0

)
(4.4.11)

' ~ωa†a+
(
Ec 0
0 Ev

)
− 1

2

(
0 Eω ·dcva

E∗ω ·dvca 0

)
(4.4.12)

= ~ωa†a+
Ec +Ev

2
+
~ωcv

2
σz + ~

(
λσ+a+λ∗σ−a

†
)

(4.4.13)

where

λ =
−1
2
Eω ·dcv . (4.4.14)

The average energy Ec+Ev
2 is only a constant so as irrelavent to dynamics. In most cases,

it is possible to make λ real by choosing the phase of dcv . The Jaynes–Cummings Model
is then obtained as

HJC = ~ωa†a+
~ωcv

2
σz + ~λ

(
σ+a+ σ−a

†
)
. (4.4.15)

We have used the Pauli matrices

σz = |Ec〉〈Ec| − |Ev〉〈Ev | =
(
1 0
0 −1

)
, (4.4.16)

σ+ = |Ec〉〈Ev | =
(
0 1
0 0

)
, (4.4.17)

σ− = |Ev〉〈Ec| =
(
0 0
1 0

)
. (4.4.18)

The electron number operator is an identity,

Ne = |Ec〉〈Ec|+ |Ev〉〈Ev |, (4.4.19)

and the excitation number operator is

Nex = |Ec〉〈Ec|+ a†a. (4.4.20)

These numbers are conservative since the commutators vanish

[H,Ne] = 0, (4.4.21)

[H,Nex] = 0. (4.4.22)

Exercise 4.1 Excitation Numberen Show Eq. (4.4.30). �
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4.4.3 Jaynes–Cummings Model
The Jaynes–Cummings Model is then obtained as

HJC = ~ωa†a+
~ωcv

2
σz + ~λ

(
σ+a+ σ−a

†
)
. (4.4.23)

We have used the Pauli matrices

σz = |Ec〉〈Ec| − |Ev〉〈Ev | =
(
1 0
0 −1

)
, (4.4.24)

σ+ = |Ec〉〈Ev | =
(
0 1
0 0

)
, (4.4.25)

σ− = |Ev〉〈Ec| =
(
0 0
1 0

)
. (4.4.26)

The electron number operator is an identity,

Ne = |Ec〉〈Ec|+ |Ev〉〈Ev |, (4.4.27)

and the excitation number operator is

Nex = |Ec〉〈Ec|+ a†a. (4.4.28)

These numbers are conservative since the commutators vanish

[H,Ne] = 0, (4.4.29)

[H,Nex] = 0. (4.4.30)

The Hamiltonian is decomposed as

HI = ~ωNex − ~
ω
2
Ne, (4.4.31)

HII = −~∆
2
σz + ~λ

(
σ+a+ σ−a

†
)
. (4.4.32)

with ω =ωcv +∆. The two Hamiltonians HI and HII commute with each other,

[HI ,HII ] = 0, (4.4.33)

which means the two Hamiltonian are decoupled and can be block-diagonalized. The
Hamiltonian HI describes the conservative numbers so that it is irrelevant to dynamics.
All the dynamics is given by HII . We can use the interaction picture where H0 =HI so
that the dynamics is given by

i~
∂
∂t
|ψ〉 =HII |ψ〉. (4.4.34)

The kets here are in the interaction picture. The basis kets are

|Em〉 ⊗ |n〉 ≡ |Em〉|n〉 (4.4.35)

where n = c or v and n = 0, 1, ,2, 3, ... It seems that if we want to use the number states
as the basis, the dimension of the Hamiltonian would be infinite. This is true, but the
Hamiltonian can be block-diagonalized. Each block is just a 2 by 2 matrix. Because the
excitation number is conserved, only the states with the same excitation number
are coupled. For example, the state |Ec〉|n〉 is only coupled to |Ev〉|n+ 1〉. The problem
is then to solve a two-dimensional Hamiltonian since each block is independent.
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� Example 4.1 Number Statens Let the light in the number state |n〉. The two basis
kets are

|Ev〉|n+ 1〉 ≡ |i〉, (4.4.36)

|Ec〉|n〉 ≡ |f 〉. (4.4.37)

An arbitrary state in the interaction picture is

|ψ(t)〉 = Ci(t)|i〉+Cf (t)|f 〉. (4.4.38)

Plugging this state in Eq. (4.4.34), we obtain

i~
∂
∂t

(
Cf
Ci

)
=

(
−~∆2

√
n+ 1~λ√

n+ 1~λ ~∆
2

)(
Cf
Ci

)
. (4.4.39)

The eigenfrequencies are

ω± = ±

√
∆2

4
+ (n+ 1)λ2. (4.4.40)

and the eigenvectors (using the Bloch sphere representation) are

|ω+〉 =
(
cos θ2
sin θ

2

)
e−iω+t (4.4.41)

|ω−〉 =
(

sin θ
2

−cos θ2

)
e−iω−t (4.4.42)

with

θ = − tan−1
(

2
√
n+ 1λ
∆

)
. (4.4.43)

If the initial state is Ci = 1 and Cf = 0, the solution becomes

|ψ〉 = sin
θ
2
|ω+〉 − cos

θ
2
|ω−〉, (4.4.44)

Ci(t) = cosω+t + i cosθ sinω+t, (4.4.45)

Cf (t) = −i sinθ sinω+t. (4.4.46)

The population of the excited state ne = |Cf (t)|2 is

ne = sin2θ sin2ω+t, (4.4.47)

= sin2θ sin2

√
∆2

4
+ (n+ 1)λ2t. (4.4.48)

This is the Rabi oscillation between the states |Ev〉|n+ 1〉 and |Ec〉|n〉. Only when the
detuning is zeros, we have sinθ = 1 and the maximum excitation. The Rabi frequency
is

ω+ =

√
∆2

4
+ (n+ 1)λ2. (4.4.49)
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The Rabi frequency does depend on the number of the photons. One novel case is
n = 0 where the frequency is not zero but

ω+(n = 0) =

√
∆2

4
+λ2. (4.4.50)

This means that there exists the Rabi oscillation even when there is no photon.5 This is
called the “vacuum Rabi oscillations”.
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Figure 4.3: Rabi oscillations of the JC models for n = 0 and n = 2. The other parameters
are ∆ = 0 and λ = 0.1

.

�

4.4.4 JC models with a Coherent State
Let us consider a more general situation where the photon state is

|field〉 =
∞∑
n=0

Cn|n〉, (4.4.51)

and the two level system is

|TSL〉 = Cc|Ec〉+Cv |Ev〉. (4.4.52)

The total state is

|ψ〉 = |TSL〉 ⊗ |field〉. (4.4.53)

5Well, the average number of photons is 1/2.
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The solution is then (when ∆ = 0)

|ψ〉 =
∑
n

[CcCn cos(ωn+1t)− iCvCn+1 sin(ωn+1t)] |Ec〉|n〉 (4.4.54)

+
∑
n

[CvCn+1 cos(ωn+1t)− iCcCn sin(ωn+1t)] |Ev〉|n+ 1〉, (4.4.55)

where

ωn =ω+(n). (4.4.56)

Let the initial state be Cc = 0 and Cv = 1. The population of the excited state is

ne = |Cc(t)|2 =
∑
n

|Cn+1|2 sin2ωn+1t (4.4.57)

=
∑
n

|Cn+1|2
(1− cos2ωn+1t

2

)
(4.4.58)

=
1
2
−
∑
n

|Cn+1|2
(cos2ωn+1t

2

)
. (4.4.59)

In terms of n, we obtain

ne =
1
2
−
∑
n

|Cn+1|2
(

cos2λ
√
n+ 1t

2

)
. (4.4.60)

Figure 4.4 shows the populations in the cases of coherent states. Even with a coherent
state, the population is not a simple harmonic oscillation as in the classical case. There
are two new properties. First, the oscillation lasts for a time τc (the duration of the wave
packet.) and collapses. It is shown that the time τc is in the limit n→∞,

τc '
√

2
λ
. (4.4.61)

After a rephasing time τrp, the oscillation comes back. This is called the revival. The
time τrp is in the limit n→∞,

τrp '
4π|α|
λ

. (4.4.62)

Two properties of the JC model are

• Collapsing
• Revival
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Figure 4.4: Rabi oscillations of the JC models for a coherent state. Collapsing and
revival appear.

4.4.5 Dressed States
We focused on the dynamics of the JC model. Now, we discuss the eigenstates of the JC
model. First, the photon energy in the vaccuum is E = n~ω.6 In a cavity, photons are
coupled with the TLS. As a result, the photon energies are shifted. We can think that
the combination of photons and the TLS leads to a new state called “dressed states”,
or in the context of condensed matter physics, “polaritons”. We start with the full
Hamiltonian,

H = ~ωa†a− ~∆σz + ~λ(σ−a
† + σ+a). (4.4.63)

Consider the subspace spanned by Eqs. (4.4.36) and (4.4.37). The eigenvalues are

E1n = n~ω+ωn, (4.4.64)

E2n = n~ω −ωn, (4.4.65)

where ωn =
√

∆2

4 + (n+ 1)λ2 and the eigenvectors (using the Bloch sphere representation)
are

|1n〉 =
(
cos θ2
sin θ

2

)
e−iω+t (4.4.66)

|2n〉 =
(

sin θ
2

−cos θ2

)
e−iω−t (4.4.67)

with

θ = − tan−1
(

2
√
n+ 1λ
∆

)
. (4.4.68)

6We drop 1/2~ω.
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The dressed photons are the eigenstates of the total system. Compared to photons in
vacuum, their frequencies shift and become non-degenerate. The splitting of dressed
states is the origin of the Mollow triplet emissions.
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Figure 4.5: Mollow triplet emissions.

Figure 4.6: Experimental observation of the Mollow triplet emissions. From Nature
Physics 5, 198–202(2009)
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5. Correlation and Coherence
Functions

5.1 Correlation Functions
A correlation function is a mathematical tool used to measure the dependence between
two or more variables. In physics, these variables are physical quantities depending on
positions and time. For example, let s1(r, t) and and s2(r, t) be the two amplitudes of
two scalar waves. The first order correlation function is

C(1)(∆r,∆t) = 〈s∗1(r1, t1)s2(r2, t2)〉, (5.1.1)

where 〈...〉 denotes an ensemble average.
The correlation functions are used to describe spatial and temporal coherences of

waves. The superposition of two waves is

|s1(r1, t1) + s2(r2, t2)|2 = |s1(r1, t1)|2 + |s2(r2, t2)|+ 2Re[s1(r1, t1)s∗2(r2, t2)]. (5.1.2)

The ensemble-averaged interference is

〈2Re[s1(r1, t1)s∗2(r2, t2)]〉 = 2Re[C(∆r,∆t)]. (5.1.3)

Correlation functions are called auto-correlation functions if s1 and s2 are the same
variables. If s1 is the same source as s2 and ∆r = 0, the correlation functions measure
the temporal coherence. If s1 is the same source as s2 and ∆t = 0, the correlation
functions measure the spatial coherence. We can define the dimensionless correlations
function g(1), 1 called the first-order correlation function or normalized correlation
function,

g(1)(∆r,∆t) =
〈s∗1(r1, t1)s2(r2, t2)〉√
〈|s1(r1, t1)|2〉〈|s2(r2, t2)|2〉

. (5.1.4)

1In the literature, people use γ (1) for classical cases and g(1) for quantum cases. Here, I use g(1) for
both the cases.
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According to the Schwartz inequality, 0 ≤ g(1) ≤ 1. The coherences are related g(1) by

|g(1)| = 1, coherent, (5.1.5)

0 < |g(1)| < 1, partially coherent, (5.1.6)

|g(1)| = 0, completely incoherent. (5.1.7)

The coherence function g(1) typically decreases at time goes or traveled optical
length increases. The process is called decoherence. Two main sources of decoherence
are (a) non-monochromatic light and (b) noises due to collisions or scatterings. We
might model the decoherence as

g(1)(t) = g(1)(0)exp
(
− t
τc

)
, (5.1.8)

where τc is the coherence time. If a light source is not monochromatic and has a band
width ∆ω, the coherent time is τc ∼ 1

∆ω .
In probability and statistics theories, we can specify a probability distribution of

a variable X if we know all the moments of X, i.e., 〈X〉 , 〈X2〉, 〈X3〉,... If we want
to fully specify the relation between X and Y , we need to know not only 〈XY 〉 but
also the higher order terms such as 〈X2Y 2〉, 〈X3Y 3〉. One can define the high-order
autocorrelation functions are defined as

C(2)(x1,x2,x3,x4) = 〈s∗(x1)s∗(x2)s(x3)s(x4)〉 (5.1.9)

ans so on. Here, xn denotes (x1, t1). One useful case is

C(2)(x1,x2,x2,x1) = 〈I(x1)I(x2)〉, (5.1.10)

which is called the intensity-intensity correlation function. The second-order coherence
function g(2) is defined as

g(2)(x2 − x1) ≡ g(2)(x1,x2,x2,x1) =
C(2)(x1,x2,x2,x1)

C(1)(x1,x1)C(1)(x2,x2)
. (5.1.11)

In quantum optics, waves are electric fields. The scalar field s(x) is replaced by E ≡ E · ê,
where ê is a unit vector. For example, the first-order coherence function becomes

g(1)(∆r,∆t) =
〈E∗1(r1, t1)E2(r2, t2)〉√
〈|E1(r1, t1)|2〉〈|E2(r2, t2)|2〉

. (5.1.12)

5.1.1 Definitions in Quantum Optics
When defining correlation functions for quantum optics, we have the following term

〈E∗1(r1, t1)E2(r2, t2)〉. (5.1.13)

Classically, the order of the product in the average does not matter. But quantumly, we
have to deal with the order carefully. Physically, correlations are measured quantities.
Measurement processes consist of absorptions of photons by the detectors. Say, first the



66 Chapter 5. Correlation and Coherence Functions

detector absorbed one photon at t1 and another photon at a latter time t2. This process
is described by two annihilation operators

a(t2)a(t1)|i〉, (5.1.14)

where |i〉 is the initial state. The probability of the process is proportional to the norm
of Eq. (5.1.14).

〈i|a†(t1)a†(t2)a(t2)a(t1)|i〉. (5.1.15)

Thus, we have the following summary
• All annihilation operators are on the right.
• All creation operators are on the left.
• An annihilation operator at an earlier time is on the right.
• An creation operator at an earlier time is on the left.

The correlation functions are given by the density-matrix approach

C(1) = Tr[ρE∗(t2)a†(t2)E(t1)a(t1)] (5.1.16)

= E∗(t2)E(t1)Tr[ρa†(t2)a(t1)], (5.1.17)

C(2) = Tr[ρE∗(t1)a†(t1)E∗(t2)a†(t2)E(t2)a(t2)E(t1)a(t1)] (5.1.18)

= E∗(t1)E∗(t2)E(t2)E(t1)Tr[ρa†(t1)a†(t2)a(t2)a(t1)] (5.1.19)

= Ĩ(t1)Ĩ(t2)Tr[ρa†(t1)a†(t2)a(t2)a(t1)]. (5.1.20)

We should use these correlation function to calculate the quantum coherence functions
defined in Eqs. (5.1.11) and (5.1.12).

5.2 Young’s Interference and First-Order Coherent Func-
tion

Figure 5.1: Young’s interference.
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Let the source generated single-mode photons whose annihilation operator is a. The
photons then pass the two slits. The two slits are regarded as the light sources whose
annihilation operators are a1 and a2. We assume the two slits are equal such that

a =
1
√

2
(a1 + a2) . (5.2.1)

The intensity on the screen is indeed the first-order correlation function

I(t) = Ĩ(t)Tr[ρa†(t)a(t)] (5.2.2)

=
Ĩ(t)
2

{
Tr[ρa†1(t)a1(t)] + Tr[ρa†2(t)a2(t)] + Tr[ρa†1(t)a2(t)] + Tr[ρa†2(t)a1(t)]

}
(5.2.3)

=
Ĩ(t)
2

{
Tr[ρa†1(0)a1(0)] + Tr[ρa†2(0)a2(0)] + Tr[ρa†1(0)a2(0)]eiΦ + Tr[ρa†2(0)a1(0)]e−iΦ

}
,

(5.2.4)

where Φ is the phase difference due to the optical length. When the incident light is a
one-photon state, we have the state after two slits

a†|0〉 =
1
√

2

(
a†1 + a†2

)
|0〉 =

1
√

2
(|10〉+ |01〉). (5.2.5)

The first-order correlation function is

I(t) = Ĩ(t)
(

1 + cosΦ
2

)
. (5.2.6)

When the incident light is a two-photon state, we have the state after two slits

(a†)2|0〉 =
1
2

(
a†1 + a†2

)2
|0〉 =

1
2

(|20〉+
√

2|11〉+ |02〉). (5.2.7)

The first-order correlation function is

I(t) = 2Ĩ(t)
(

1 + cosΦ
2

)
. (5.2.8)

For a n-photon state, we have

I(t) = nĨ(t)
(

1 + cosΦ
2

)
. (5.2.9)

It can be shown that for a coherent state, we have

I(t) = n̄Ĩ(t)
(

1 + cosΦ
2

)
. (5.2.10)

We have the following notes
• Interference occurs even when for a single-photon state.
• First-order correlation functions describe interferences.
• First-order correlation functions can not distinguish what kind of photon state

the light is. For number states and coherent states, the interferences are the same
as cosΦ .
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5.3 Hanbury-Brown and Twiss Experiment and g2

Figure 5.2: Hanbury- Brown and Twiss experiment.

First-order coherence in Young’s experiment can determine how monochromatic a light
is, or noise levels by measuring coherent lengths. The properties revealed by first-order
coherence are related to the modes and the environments (noise). However, first-order
coherence does not tell which photon state it is, that is, if two states are from the
same mode, first-order coherence can not distinguish their photon distribution. Say, to
distinguish a number state |n〉 and a coherent state |α〉 from the same mode, we have to
use the second-order coherence function g(2).

In the 1950s, Hanbury Brown and Twiss developed an experiment to measure
intensity-intensity correlations (see Fig. 5.2). The main difference from a Young’s
interference is that there are two intensity detectors instead of one. The two optical
paths after the beam splitter lead to a time delay τ . The rates of coincident events is
measured by the coincidence counter and proportional to

C(2) = 〈E∗(t1)a†(t1)E∗(t2)a†(t2).E(t2)a(t2)E(t1)a(t1)〉 (5.3.1)

5.3.1 Classical Regime
Classically, we can write the second-order correlation function as

C(2) = 〈I(t + τ)I(t)〉, (5.3.2)

and the second-order coherent function g(2) as

g(2) =
〈I(t + τ)I(t)〉
〈I(t + τ)〉〈I(t)〉

. (5.3.3)

For a stationary light, 〈I(t)〉 is time-independent. The second-order coherent function
g(2) becomes

g(2) =
〈I(t + τ)I(t)〉
〈I(t)〉2

. (5.3.4)
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The following properties can be shown (only in the classical regime),

1 ≤ g(2)(0) <∞, (5.3.5)

g(2)(τ) ≤ g(2)(0). (5.3.6)

For a chaotic light source, it can be shown that

g(2)(τ) = 1 + |g(1)(τ)|2, (5.3.7)

and if g(1)(τ) = e−
τ
τc ,

g(2)(τ) = 1 + e−
2τ
τc . (5.3.8)

For chaotic lights, it is shown g(2)(0) = 2. This is called the photon bunching-effects.

5.3.2 Quantum Regime
The orders of operators in the correlation functions should be treated carefully. For a
single mode, the second-order coherent function is

g(2)(τ) =
〈a†(t)a†(t + τ)a(t + τ)a(t)〉
〈a†(t + τ)a(t + τ)〉〈a†(t)a(t)〉

(5.3.9)

=
〈a†a†aa〉
〈a†a〉2

(5.3.10)

= 1 +
σ2(n)− n̄

n̄2 (5.3.11)

We can show that

g(2)(0) =

2, chaotic,
1, coherent,

(5.3.12)

and for a number state

g(2)(0) =

0, n = 0, 1,
n−1
n , else.

(5.3.13)

As time increases, light becomes incoherent. We may use the result for chaotic light,

g(2)(τ) = 1 + |g(1)(τ)|2, (5.3.14)

and g(1)(τ)→ 0 as τ→∞. Thus as τ→∞, g(2)(τ) = 1.
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Figure 5.3: g(2)(τ) of various photon ensembles.

Exercise 5.1 Coherence Fucntionscf Calculate g(2)(0) for the following cases:
a state

|ψ〉 =
1
√

2
(|0〉+ |1〉) . (5.3.15)

(a)(b) an ensemble

ρ =
1
2
|0〉〈0|+ 1

2
|1〉〈1|. (5.3.16)

(c) an ensemble

ρ =
1
2
|0〉〈0|+ 1

2
|1〉〈1|+ i

2
|0〉〈1|+ −i

2
|1〉〈0| (5.3.17)

Hint: use

g(2)(0) =
〈a†a†aa〉
〈a†a〉2

(5.3.18)

�



6. Beam Spliter and Non-Classical
Light

6.1 Beam Splitters

Figure 6.1: Beam spliter. Quantum descriptions.

Let the right-going photons have the annihilation operator a1, and the left-going photons
have the annihilation operator a0. A beam splitter is described by the scattering matrix(

a2
a3

)
=

(
t r
r t

)(
a0
a1

)
, (6.1.1)

where |r |2 + |t|2 = 1. One can check that if

[a0, a
†
0] = 1, (6.1.2)

[a1, a
†
1] = 1, (6.1.3)

[a0, a
†
1] = 0, (6.1.4)

we have

[ai , a
†
j ] = δij . (6.1.5)
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The matrix is indeed a scattering matrix

U =
(
t r
r t

)
, (6.1.6)

which is unitary.

6.1.1 Single Photon
The incident state is |0〉0|1〉1, and

|0〉0|1〉1 = a†1|0〉0|0〉1. (6.1.7)

Aftering incident on the beam splitter, the state becomes

Ua†1|0〉0|0〉1 = (ra2 + ta3)|0〉2|0〉3 (6.1.8)

= r |1〉2|0〉3 + t|0〉2|1〉3, (6.1.9)

which is an entangled state.

Figure 6.2: Mach–Zehnder interferometer.

Consider a Mach–Zehnder interferometer with two 50:50 beam splitters of r = i√
2

and t = 1√
2
. Let the initial state be |0〉0|1〉1. After the first beam splitter, the state

becomes
i
√

2
|1〉2|0〉3 +

1
√

2
|0〉2|1〉3. (6.1.10)

When the state arrives at the second beam splitter, the state becomes

i
√

2
|1〉2|0〉3 +

eiθ
√

2
|0〉2|1〉3, (6.1.11)

where θ is a phase shift due to the difference of the two paths. The final state after the
second beam splitter is (see the figure: a2 is the new a1 and a3 is the new a0)(

a2
a3

)
=

 1√
2

i√
2

i√
2

1√
2


 eiθ√2
i√
2

 (6.1.12)

=

 (eiθ−1)
2

i(eiθ+1)
2

 (6.1.13)
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The probability at D1 is
∣∣∣∣∣(eiθ−1)

2

∣∣∣∣∣2 = sin2 θ
2 . The probability at D2 is

∣∣∣∣∣ i(eiθ+1)
2

∣∣∣∣∣2 = cos2 θ
2 .

This is a more rigorous description of a single-photon interference.

6.1.2 N-Photons

Let the initial state be |0〉0|N 〉1 = (a†1)N√
N !
|0〉. After a beam splitter, the state becomes

(Ua†1)N
√
N !
|0〉 =

(ta†2 + ra†3)N
√
N !

|0〉. (6.1.14)

6.1.3 Coherent States

Let the initial state be |0〉0|α〉1 = D1[α]|0〉 = eαa
†
1−α

∗a1 |0〉. After a beam splitter, the
state becomes

eαUa
†
1−α

∗U†a1 |0〉 = eαta
†
2−α

∗t∗a2eαra
†
3−α

∗r∗a3 |0〉 (6.1.15)

=D2[tα]D3[rα]|0〉 (6.1.16)

= |tα〉2|rα〉3. (6.1.17)

The input of a coherent state is split into a product of two coherent states. Unlike the
single-photon case, this state is not entangled.

Consider a Mach–Zehnder interferometer with two 50:50 beam splitters of r = i√
2

and t = 1√
2
. Let the initial state be |0〉0|α〉1. After the first beam splitter, the state

becomes∣∣∣∣∣∣ iα√2

〉
2

∣∣∣∣∣∣ α√2

〉
3

. (6.1.18)

When the state arrives at the second beam splitter, the state becomes∣∣∣∣∣∣ iα√2

〉
2

∣∣∣∣∣∣eiθα√2

〉
3

. (6.1.19)

where θ is a phase shift due to the difference of the two paths. The final state after the
second beam splitter is (see the figure: a2 is the new a1 and a3 is the new a0)∣∣∣∣∣∣∣

(
eiθ − 1

)
2

〉
2

∣∣∣∣∣∣∣ i
(
eiθ + 1

)
2

〉
3

. (6.1.20)

The intensity at D1 is |α|2
∣∣∣∣ eiθ−1

2

∣∣∣∣2 = sin2 θ
2 |α|

2. The intensity at D2 is |α|2
∣∣∣∣ eiθ+1

2

∣∣∣∣2 =

cos2 θ
2 |α|

2. The two output beams are both coherent states. Thus, the phase θ can be
obtained by

I2 − I1
|α|2

= cosθ. (6.1.21)
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However, the amplitudes have uncertainty σ (n) =
√
n̄. Thus, the phase has the uncer-

tainty σ (θ) ∼ 1√
n̄
. In experiments, we would like to use a coherent light (laser) with a

well defined phase and a strong intensity such that the uncertainty in phase is small.
But a strong-intensity light may lead to more noise such as radiation pressures, thermo
noise, and so on. To solve this deli-ma, lights with small σ (n) is used. These lights are
non-classical lights.

6.2 Quadrature Squeezing
The quadrature operators X and Y , satisfy

[X,Y ] =
i
2

(6.2.1)

⇒ σ (X)σ (Y ) ≥ 1
4
. (6.2.2)

The coherent states satisfy the minimum uncertainty equations,

σ (X)σ (Y ) =
1
4

(6.2.3)

and

σ (X) = σ (Y ) =
1
2
. (6.2.4)

which is a circle in the phase space. The conditions of a quadrature squeezing are

σ (X) <
1
2

or σ (Y ) <
1
2

(6.2.5)

while keeping σ (X)σ (Y ) = 1
4 . Pictorially, a squeezed state is an ellipse in the phase

space with a area π
16 . Of course, we can squeeze a state in any direction other than X

or Y . We can define the rotated quadrature operator as the following

X ′(θ) =
ae−iθ + a†eiθ

2
, (6.2.6)

Y ′(θ) =
ae−iθ − a†eiθ

2i
, (6.2.7)

which represent a coordinate transform of the quadrature operators. Depending on the
squeezed axis, we have the following squeezed states. Question: which one has the
minimum uncertainty of the photon number?
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X

Y

|α, ξ〉 σ(Y ) > 1
2

σ(X) < 1
2

X-squeezed

Y -squeezed

amplitude-squeezed

phase-squeezed

Figure 6.3: Squeezed States.

6.2.1 Squeezed Operators
Mathematically, a coherent state is generated by shifting a vacuum state in the phase
space. This is done by the displacement operator D(α),

|α〉 =D(α)|0〉. (6.2.8)

We have shown that D(α) is the evolution operator U of a oscillating current source,
that is, such a source creates a coherent state.

A squeezed state is generated by a squeeze operator,

S(ξ) = exp
(
ξ∗a2 − ξ(a†)2

2

)
, (6.2.9)

where ξ = reiθ, and r is the squeeze parameter. A squeezed operator is a unitary
operator. In principle, a unitary operator correspond a physical process. Observing
the quadratic terms of the creation and annihilation operators, it is straightforward to
speculate that the physical processes are nonlinear. This is because the quadratic

terms come from the square of the electric field operators, E2 =
(
Ea+E∗a†

2

)2
. Squeeze

operators have the relations

S†(ξ)S(ξ) = 1, (6.2.10)

S†(ξ)aS(ξ) = acoshr − a†eiθ sinhr, (6.2.11)

S†(ξ)a2S(ξ) =
(
acoshr − a†eiθ sinhr

)2
, (6.2.12)

S†(ξ)a†S(ξ) = a† coshr − ae−iθ sinhr, (6.2.13)

S†(ξ)(a†)2S(ξ) =
(
a† coshr − ae−iθ sinhr

)2
. (6.2.14)
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Let’s first consider the squeezing of a vacuum state S(ξ)|0〉. The uncertainty of the
squeezed state is

σ (X) =
1
2

√
cosh2 r + sinh2 r − 2sinhr coshr cosθ, (6.2.15)

σ (Y ) =
1
2

√
cosh2 r + sinh2 r + 2sinhr coshr cosθ. (6.2.16)

When θ = 0,

σ (X) =
1
2
e−r , (6.2.17)

σ (Y ) =
1
2
er . (6.2.18)

The state S(ξ)|0〉 is called the squeezed vacuum state, which the expectation value of
the electric field is zero. We can obtain a more general squeeze state by applying both
D(α) and S(ξ) on a vacuum state,

|α,ξ〉 ≡D(α)S(ξ)|0〉. (6.2.19)

Displacement operators have the relations

D†(α)aD(α) = a+α, (6.2.20)

D†(α)a†D(α) = a† +α∗, (6.2.21)

which add constants and do not change σ (a) and σ (a†). This means that S(ξ)|0〉 and
D(α)S(ξ)|0〉 have the same shapes in the phase space.

6.2.2 Number-State Representations
Let |ξ〉 = |0,ξ〉 expressed in the number basis,

|ξ〉 =
∑
n

Cn|n〉., (6.2.22)

where

Cn =

0, odd,
in√

coshr

√
n!

2n/2( n2 )!
einθ/2 tanhn/2 r, even.

(6.2.23)

For a general squeezed state, |α,ξ〉, the coefficients are

Cn = exp
[
−1

2
|α2| − 1

2
(α∗)2eiθ tanhr

] ( eiθ tanhr
2

)n/2
√
n!coshr

Hn

[
α +α∗eiθ tanhr
√

2eiθ tanhr

]
.

(6.2.24)
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Figure 6.4: Photon counting of squeezed states. α = 2

Figure 6.5: Photon counting of squeezed states. α = 5
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