# **Photon Statistics**

Jhih-Sheng Wu

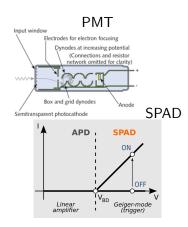
Department of Photonics NYCU

2021

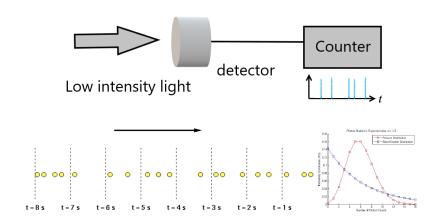
### **Outline**

# **Photon-Counting Statistics**

- Poisson distributions and coherent lights
- Super-Poisson distributions
- Sub-Poisson distributions


### **Photon Detection**

- Theories
- Shot noises
- Observation


# **Photon-Counting: Detectors**

# Sensitive light detectors:

- photomultiplier tube (PMT)
- single-photon avalanche diode (SPAD), avalanche photodiode (APD)
- superconducting nanowire single-photon detectors (SNSPDs)



### **Photon-Counting**



## **Photon-Counting Statistics**

Photon flux  $\Phi$ (number of photon per unit time)

$$\Phi = \frac{IA}{\hbar\omega} = \frac{P}{\hbar\omega}$$

Quantum Efficiency  $\eta$ ( typical  $\sim$  10 %)

$$\eta = \frac{\text{number of counts}}{\text{number of photons}} = \frac{N(T)}{\Phi T}$$

 $N\!(\,T)$  is the count number for a given duration  $\,T\,$  Counting rate R (upper limit  $10^6$  counts/sec, dead time  $\sim 1~\mu {\rm s}$ )

$$R = \frac{N}{T} = \eta \Phi = \frac{\eta P}{\hbar \omega}$$

### **Photon-Counting Statistics**

#### **Maximum Power**

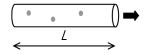
Let the maximum counting rate  $R=10^6$  count/sec and  $\eta=15\%$ . The photon energy  $\hbar\omega$  is 2 eV. What is the maximum power that the photodetector can detect?

# **Photon-Counting Statistics**

#### **Maximum Power**

Let the maximum counting rate  $R=10^6$  count/sec and  $\eta=15\%$ . The photon energy  $\hbar\omega$  is 2 eV. What is the maximum power that the photodetector can detect?

#### **Answer**


$$R = \frac{\eta P}{\hbar \omega}$$

$$\Rightarrow P = \frac{R\hbar \omega}{\eta} = 2.1 \times 10^{-12} \text{ Watt}$$

# Poisson Distribution: Coherent Light

### Counting within $\delta t$

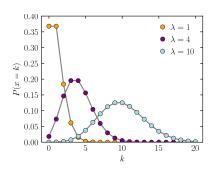
$$L = c\delta t \bar{n} = \frac{\Phi L}{c} = \Phi \delta t$$



Probability  $p_n$ : find n photons in the cube of a length L. If for a random process, the distribution is a Poisson distribution,

$$P(n) = \frac{\bar{n}^n}{n!} \exp^{-\bar{n}}.$$

### **Poisson Distribution**


A discrete random varible X with a Poisson Distrution:

$$p(X) = \frac{\lambda^X}{X!} \exp(-\lambda)$$

Average number  $\langle X \rangle$  is  $\lambda$ . Variance  $\langle X^2 \rangle - \langle X \rangle^2$  is also  $\lambda$ .

#### **Events**

- Calls per hour at a call center
- Typhoons per year
- Number of laser photons hitting a detector in a particular time interval



### **Example**

### **Number of Typhoons**

There are 5 typhoons in average coming to Taiwan every years.

- What is the probability of 4 typhoons coming to Taiwan next year?
- What is the probability of less than 2 typhoons coming to Taiwan next year?

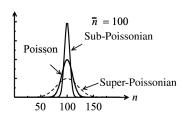
# **Example**

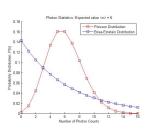
### **Number of Typhoons**

There are 5 typhoons in average coming to Taiwan every years.

- What is the probability of 4 typhoons coming to Taiwan next year?
- What is the probability of less than 2 typhoons coming to Taiwan next year?

### **Answer**


$$p(n) = \frac{5^n}{n!}e^{-5}$$
.

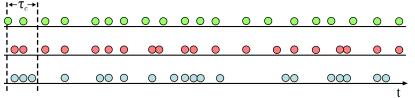

• 
$$p(4) = \frac{5^4}{4!}e^{-5} = 0.175$$

• 
$$p = p(0) + p(1) = \frac{5^0}{0!}e^{-5} + \frac{5^1}{1!}e^{-5} = 0.04$$

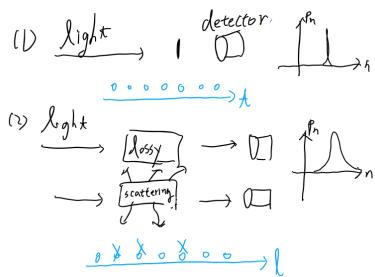
# **Classification by Photon Counting**

- (1) Super-Poissonian  $\sigma(n)>\sqrt{\bar{n}}$ : thermal, chaotic lights, mixed ensembles, non-classical light (?)
- (2) Poissonian Light  $\sigma(n) = \sqrt{\bar{n}}$ : coherent lights
- (3) Sub-Poissonian Light  $\sigma(n) < \sqrt{\bar{n}}$ : non-classical light






### **Photon Bunching and Antibunching**


Photon counting and beyond

Photon counting: information of n

Correlation: statistical relationship between photons. Coherence functions (correlation function )  $g_1, g_2, \dots$  Antibunching, Random, Bunching



# **Degradation of Photon Statistics**



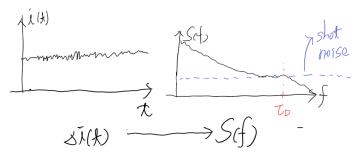
#### **Photon Detection**

- Classical theory: treat I(t) as a continuous number
  - constant intensity  $I(t) = I_0 \Rightarrow \text{Poisson distribution } \sigma(n) = \sqrt{\bar{n}}$
  - time-dependent  $I(t) \Rightarrow$  super-Poisson distribution  $\sigma(n) > \sqrt{\bar{n}}$
- Quantum theory

$$\bar{N} = \eta \bar{n}$$
  
$$\sigma^{2}(N) = \eta^{2} \sigma^{2}(n) + \eta (1 - \eta) \bar{n}$$

- (1) If  $\eta = 1$ , statistics of N is the same as n
- (2) If  $\eta \ll 1$ ,  $\sigma(N) = \sqrt{N} \Rightarrow$  always Poissonian N regardless n.

High quantum efficiency is important for sub-Poissonian photodetection.


#### **Shot Noise**

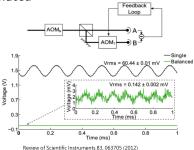
Detection with photodiode (PD): high-intensity light beam hits on PD and generate a current i(t). Let  $i(t)=\langle i\rangle+\Delta i(t)$ . Because of the particle-like property, the noise  $\Delta i(t)$  has a flat spectrum (white noise). If the detector has a band width  $\Delta f$ ,

$$\langle \Delta i^2 \rangle = 2 e \Delta f \langle i \rangle,$$

Noise power is

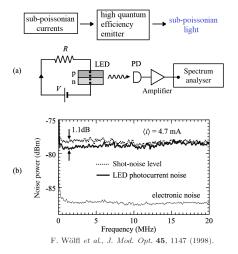
$$P_{\text{noise}} = R_L \langle \Delta i^2 \rangle = 2 e \Delta f \langle i \rangle,$$




#### **Shot Noise**

#### Classical Noise

- Continuous fluctuation
- noise power spectrum is large at low frequencies
- can be eliminated by beam splitter techniques


### Shot Noise

- Due to the discrete nature
- $\Delta i(t)$  is full random
- noise power spectrum is flat
- can not be eliminated



### **Generation of Sub-Poissonian Light**

- $\bullet$  Sub-Poissonian currents to lights, for examples, PMTs, LEDs of high quantum efficiency  $\eta$
- Squeezed light by nonlinear optics

