Quantum Information in A Nutshell

吴致盛 Jhih-Sheng Wu

陽明交大光電 Department of Photonics NYCU

2021

Outline

Quantum Information

- Types of Quantum Technologies
- Qubits and Gates
- Entanglement
- Algorithms

Reference: Physics 160 Lecture Notes by Prof. Mikhail Lukin

Types of Quantum Technologies

Classification by Prof. Lukin

- Quantum Metrology: superposition and entanglement to make more precise measurements
- Quantum Communication: superposition and entanglement to transmit information in a secure way. No-cloning theorem!
- Quantum Computing: a superposition of input states, different inputs interfere, provides "quantum parallelism". Quantum Fourier Transform.

Qubits and Bloch Sphere

A qubit is a two-state system:

$$|Q\rangle = c_0|0\rangle + c_1|1\rangle.$$

 $|0\rangle$ and $|1\rangle$ are arbitrary two different states. For example, they can be $|H\rangle$ and $|V\rangle$ of a plane wave.

$$c_0 = \cos\frac{\theta}{2}$$
 $c_1 = \sin\frac{\theta}{2}e^{i\phi}$

Operations

Single qubit operations are rotations on the Blcoh sphere.

X gate

 180° -Rotation about the *x*-axis

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$X \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Arbitrary-angle $\Delta \theta$ -rotation

$$R_X(\Delta\theta) = e^{-i\frac{\Delta\theta}{2}X}$$

Operations

Single qubit operations are rotations on the Blcoh sphere.

Y gate

 180° -Rotation about the *y*-axis

$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
$$Y = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = i \begin{pmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

Arbitrary-angle $\Delta \theta$ -rotation

$$R_Y(\Delta\theta) = e^{-i\frac{\Delta\theta}{2}Y}$$

Operations

Single qubit operations are rotations on the Blcoh sphere.

Z gate

 180° -Rotation about the *z*-axis

$$Z = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$
$$Z \begin{pmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}}\\ \frac{-1}{\sqrt{2}} \end{pmatrix}$$

Arbitrary-angle $\Delta \theta$ -rotation

$$R_z(\Delta\theta) = e^{-i\frac{\Delta\theta}{2}Z}$$

Hadamard gate

180°-Rotation about the $\left(\frac{\hat{x}+\hat{z}}{\sqrt{2}}\right)$ -axis

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

Question

 $H|X,\uparrow\rangle =?$

Operator	$\mathbf{Gate}(\mathbf{s})$	Matrix
Pauli-X (X)	- X -	 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	- Y -	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli-Z (Z)	$-\mathbf{Z}$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$-\mathbf{H}$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$
Phase (S, P)		$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8~(\mathrm{T})$	- T -	$egin{bmatrix} 1 & 0 \ 0 & e^{i\pi/4} \end{bmatrix}$

Two-qubit Operations (Gates)

Controlled NOT gate (Controlled *X* **gate)**

If the first qubit is $|0\rangle$, do nothing on the second qubit. If the first qubit is $|1\rangle$, apply X on the second qubit.

		Г1	0	0	07	1007
Controlled Not		0	1	0	0	۲۵۵] ۱۵۱۶ ۲۵۱۶ ۲۵۱۶
(CNOT, CX)		0	0	0	1	110>
$(\mathbf{OIIOI}, \mathbf{OX})$	$-\oplus$	Lo	0	1	0	111>

Controlled *Z* gate

If the first qubit is $|0\rangle$, do nothing on the second qubit. If the first qubit is $|1\rangle$, apply Z on the second qubit.

Controlled Z (CZ)
$$Z$$
 $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$

More Gates

Universal Set of Quantum Gates

Universality Theorem

Any n-dimensional unitary operator can be decomposed as a product of two-dimensional operators.

Specific Sets of Quantum Gates

- 1. H, CNOT, and T
- 2. Toffoli and H

Quantum Programing

Quantum Programing

Quantum Programing

You can run the quantum code with python and real qubits!

\leftrightarrow \rightarrow C ($$ qiskit.org/textbook/ch-algorithm	s/teleportation.html	🕸 🏚 ໜ E
⊜ Qiskit	Overview Learn Community	Documentation Q
Learn Quantum Computation using Qiskit What is Quantum? 0. Prerequisites 1. Quantum States and Qubits 1.1 Introduction 1.2 The Atoms of Computation 1.3 Representing Qubit States 1.4 Single Qubit Gates 1.5 The Case for Quantum 2. Multiple Qubits and Entanglement	<pre></pre>	On This Page Contents 1. Overview 2. The Quantum Teleportation Protocol 3. Simulating the Teleportation Protocol 3.1 How Will We Test the Protocol on a Quantum Computer? 3.2 Using the Statevector Simulator 3.3 Using the QASM Simulator 4. Understanding Quantum Teleportation on a Real Quantum Computer 5.1 IBM hardware and Deferred Reasurement
2.1 Introduction 2.2 Multiple Qubits and Entangled States 2.3 Phase Kickback 2.4 More Circuit Identities 2.5 Eproing Linkersality	<pre>ctz = ClassicalRegister(1, name="ctz") # and 2 classical crx = ClassicalRegister(1, name="ctx") # in 2 different r teleportation_circuit = QuantumCircuit(qr, crz, crx) run restart</pre>	5.2 Executing 6. References
English 🗸	Step 1	

Bell States

Definition

A state is entangled if

 $|\psi\rangle \neq |\psi\rangle_A \otimes |\psi\rangle_B.$

Bell States

Two-level systems A and B. Bell states are

$$\begin{split} |\Phi^{\pm}\rangle_{AB} &= \frac{|00\rangle \pm |11\rangle}{\sqrt{2}} \\ |\Psi^{\pm}\rangle_{AB} &= \frac{|01\rangle \pm |10\rangle}{\sqrt{2}} \end{split}$$

Measurement by Alice affects the reduced density matrix of Bob!

JSW	Entanglement	16	/ 20

Einstein-Podolsky-Rosen Paradox

EPR Paradox

Einstein did not believe that measurement by Alice can affect the spatially separate state of Bob. His thought was local reality. In stead of 100% in

$$\frac{|01\rangle + |10\rangle}{\sqrt{2}},$$

he thought that 50% in

 $|10\rangle$

and 50% in

 $|01\rangle$

He thought the state was not superposition! There was a reality before measurement.

WZL	Entanglement	17 / 20

Bell Inequality

To determine whether

John Bell in 1964, if local reality, then

 $| C_h(a, b) - C_h(a, c) | \le 1 + C_h(b, c)$

The inequality basically describes the correlations. But, this inequality can be violated if it is the left case. Experiments showed that the Bell's inequality is violated. Superposition and entanglement are true!!

Application of Entanglement

- Quantum key distribution
- Superdense coding
- Quantum teleportation

Quantum Algorithms

• Deutsch's Algorithm

Determine if a function f(x) is constant for x = 0, 1 and f(x) = 0, 1.

- Deutsch-Jozsa algorithm Determine if a function $f(x_n)$ is constant for all $x_n = 0, 1$ and $f(x_n) = 0, 1$.
- Grover's Algorithm

Find x_i such $f(x_i) = 1$ when all other $f(x_n) = 0$. If the number of x_n is N, the classical algorithm takes O(N) steps. Grover's algorithm takes $O(\sqrt{N})$ steps.

Shor's Algorithm

Decompose a product of two large prime number N = pq. Acceleration from exponential time to polynomial time.